Electron microscopy study on the formation of ferromanganese crusts, western Pacific Magellan Seamounts

Kiho Yang, Hanbeom Park, Seung Kyu Son, Hionsuck Baik, Kyeongryang Park, Jonguk Kim, Junbeom Yoon, Chan Hong Park, Jinwook Kim

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Variations in mineralogy and chemical composition, layer structures, redox states of Fe and Mn, and microbial diversity are closely linked to the biogeochemical process when a ferromanganese crust layer forms. A sample collected from the Magellan Seamount (OSM11), in the western Pacific, was characterized in five well-defined layers, top to bottom (L1–5). Fe-vernadite occurs in all layers, compared to detritus quartz, feldspar, goethite, and hematite in L1 and L3, and carbonate fluorapatite (CFA) in L4–5. The relatively high concentrations of Ca and P in L4–5, and Fe, Co, and Si in L1 and L3 correspond to the mineralogical variations in the crust layer. Disappearance of elongated voids along the convex growth line is likely due to void filling precipitation of CFA in L4–5, resulting in the void reduction (31.6 to 6.0%). The oxidation states of Fe in Fe-vernadite measured by electron energy loss spectroscopy (EELS) ranges from 36 to 63% of Fe 3+ /Fe tot , and a layer where CFA appeared (L4) contains a more reductive form of Fe (Fe 3+ /Fe tot = 36–48%). Presence of Fe- (coxC) and Mn-oxidizing gene (cumA), particularly displaying a strong PCR band of coxC in L2–3, indicates a dominant oxidizing condition. Direct evidence of microbial activity in Fe - and Mn-oxide precipitation with various redox conditions was identified in the focused ion beam-sectioned microfossil. Particularly, a spectrum image displaying a more reducing form of Fe around the voids previously occupied by microorganisms, strongly supports that microorganisms play an important role in the redox reaction in the growth of a crust.

Original languageEnglish
Pages (from-to)32-41
Number of pages10
JournalMarine Geology
Volume410
DOIs
Publication statusPublished - 2019 Apr

Bibliographical note

Funding Information:
The present research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2018R1A2B6002036 ) and the Ministry of Oceans and Fisheries , Korea ( 19992001 ) to JWK. HRTEM analysis was partly supported by the Korea Basic Science Institute (KBSI) project ( T35520 ).

Funding Information:
The present research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2018R1A2B6002036) and the Ministry of Oceans and Fisheries, Korea (19992001) to JWK. HRTEM analysis was partly supported by the Korea Basic Science Institute (KBSI) project (T35520).

Publisher Copyright:
© 2019 Elsevier B.V.

All Science Journal Classification (ASJC) codes

  • Oceanography
  • Geology
  • Geochemistry and Petrology

Fingerprint

Dive into the research topics of 'Electron microscopy study on the formation of ferromanganese crusts, western Pacific Magellan Seamounts'. Together they form a unique fingerprint.

Cite this