TY - JOUR
T1 - Electronic structure of graphene on single-crystal copper substrates
AU - Walter, Andrew L.
AU - Nie, Shu
AU - Bostwick, Aaron
AU - Kim, Keun Su
AU - Moreschini, Luca
AU - Chang, Young Jun
AU - Innocenti, Davide
AU - Horn, Karsten
AU - McCarty, Kevin F.
AU - Rotenberg, Eli
PY - 2011/11/9
Y1 - 2011/11/9
N2 - The electronic structure of graphene on Cu(111) and Cu(100) single crystals is investigated using low-energy electron microscopy, low-energy electron diffraction, and angle-resolved photoemission spectroscopy. On both substrates the graphene is rotationally disordered and interactions between the graphene and substrate lead to a shift in the Dirac crossing of ∼-0.3 eV and the opening of a ∼250 meV gap. Exposure of the samples to air resulted in intercalation of oxygen under the graphene on Cu(100), which formed a (√2×2√2)R45o superstructure. The effect of this intercalation on the graphene π bands is to increase the offset of the Dirac crossing (∼-0.6 eV) and enlarge the gap (∼350 meV). No such effect is observed for the graphene on the Cu(111) sample, with the surface state at Γ not showing the gap associated with a surface superstructure. The graphene film is found to protect the surface state from air exposure, with no change in the effective mass observed, as for one monolayer of Ag on Cu(111).
AB - The electronic structure of graphene on Cu(111) and Cu(100) single crystals is investigated using low-energy electron microscopy, low-energy electron diffraction, and angle-resolved photoemission spectroscopy. On both substrates the graphene is rotationally disordered and interactions between the graphene and substrate lead to a shift in the Dirac crossing of ∼-0.3 eV and the opening of a ∼250 meV gap. Exposure of the samples to air resulted in intercalation of oxygen under the graphene on Cu(100), which formed a (√2×2√2)R45o superstructure. The effect of this intercalation on the graphene π bands is to increase the offset of the Dirac crossing (∼-0.6 eV) and enlarge the gap (∼350 meV). No such effect is observed for the graphene on the Cu(111) sample, with the surface state at Γ not showing the gap associated with a surface superstructure. The graphene film is found to protect the surface state from air exposure, with no change in the effective mass observed, as for one monolayer of Ag on Cu(111).
UR - http://www.scopus.com/inward/record.url?scp=82655185053&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=82655185053&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.84.195443
DO - 10.1103/PhysRevB.84.195443
M3 - Article
AN - SCOPUS:82655185053
SN - 1098-0121
VL - 84
JO - Physical Review B-Condensed Matter
JF - Physical Review B-Condensed Matter
IS - 19
M1 - 195443
ER -