Electronic structures of CuI interlayers in organic electronic devices: An interfacial studies of N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine/CuI and tris-(8-hydroxyquinolinato)aluminum/CuI

Soohyung Park, Hyunbok Lee, Jeihyun Lee, Younjoo Lee, Yeonjin Yi

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Electronic structures with the copper iodide (CuI) interlayer in organic electronic devices were measured and its strong electron-withdrawing properties were revealed. In situ ultraviolet and X-ray photoelectron spectroscopy showed the interfacial electronic structures of N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (NPB)/CuI/indium-tin-oxide (ITO) and tris-(8-hydroxyquinolinato)aluminum (Alq3)/CuI/ITO as a representative hole- and electron-transport material. The large work function of the CuI interlayer induces electron transfer from both molecules and ITO to CuI. As a result, CuI dramatically reduces the hole injection barrier (HIB) from ITO to NPB and Alq3 layers. Notably, CuI assists molecular ordering of the NPB layer, which would increase the intermolecular interaction, so would enhance the charge transport properties. Simultaneous enhancement in HIB and molecular ordering with the CuI interlayer would improve the device performance.

Original languageEnglish
Pages (from-to)3298-3305
Number of pages8
JournalOrganic Electronics
Volume15
Issue number11
DOIs
Publication statusPublished - 2014 Nov

Fingerprint

Diamines
diamines
Tin oxides
Aluminum
indium oxides
Indium
tin oxides
Electronic structure
interlayers
electronic structure
aluminum
electronics
injection
Electrons
Iodides
Transport properties
iodides
Charge transfer
Copper
electron transfer

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Chemistry(all)
  • Condensed Matter Physics
  • Materials Chemistry
  • Electrical and Electronic Engineering

Cite this

@article{086b45fac58543f7be384a01be4bd2ab,
title = "Electronic structures of CuI interlayers in organic electronic devices: An interfacial studies of N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine/CuI and tris-(8-hydroxyquinolinato)aluminum/CuI",
abstract = "Electronic structures with the copper iodide (CuI) interlayer in organic electronic devices were measured and its strong electron-withdrawing properties were revealed. In situ ultraviolet and X-ray photoelectron spectroscopy showed the interfacial electronic structures of N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (NPB)/CuI/indium-tin-oxide (ITO) and tris-(8-hydroxyquinolinato)aluminum (Alq3)/CuI/ITO as a representative hole- and electron-transport material. The large work function of the CuI interlayer induces electron transfer from both molecules and ITO to CuI. As a result, CuI dramatically reduces the hole injection barrier (HIB) from ITO to NPB and Alq3 layers. Notably, CuI assists molecular ordering of the NPB layer, which would increase the intermolecular interaction, so would enhance the charge transport properties. Simultaneous enhancement in HIB and molecular ordering with the CuI interlayer would improve the device performance.",
author = "Soohyung Park and Hyunbok Lee and Jeihyun Lee and Younjoo Lee and Yeonjin Yi",
year = "2014",
month = "11",
doi = "10.1016/j.orgel.2014.09.005",
language = "English",
volume = "15",
pages = "3298--3305",
journal = "Organic Electronics: physics, materials, applications",
issn = "1566-1199",
publisher = "Elsevier",
number = "11",

}

TY - JOUR

T1 - Electronic structures of CuI interlayers in organic electronic devices

T2 - An interfacial studies of N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine/CuI and tris-(8-hydroxyquinolinato)aluminum/CuI

AU - Park, Soohyung

AU - Lee, Hyunbok

AU - Lee, Jeihyun

AU - Lee, Younjoo

AU - Yi, Yeonjin

PY - 2014/11

Y1 - 2014/11

N2 - Electronic structures with the copper iodide (CuI) interlayer in organic electronic devices were measured and its strong electron-withdrawing properties were revealed. In situ ultraviolet and X-ray photoelectron spectroscopy showed the interfacial electronic structures of N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (NPB)/CuI/indium-tin-oxide (ITO) and tris-(8-hydroxyquinolinato)aluminum (Alq3)/CuI/ITO as a representative hole- and electron-transport material. The large work function of the CuI interlayer induces electron transfer from both molecules and ITO to CuI. As a result, CuI dramatically reduces the hole injection barrier (HIB) from ITO to NPB and Alq3 layers. Notably, CuI assists molecular ordering of the NPB layer, which would increase the intermolecular interaction, so would enhance the charge transport properties. Simultaneous enhancement in HIB and molecular ordering with the CuI interlayer would improve the device performance.

AB - Electronic structures with the copper iodide (CuI) interlayer in organic electronic devices were measured and its strong electron-withdrawing properties were revealed. In situ ultraviolet and X-ray photoelectron spectroscopy showed the interfacial electronic structures of N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (NPB)/CuI/indium-tin-oxide (ITO) and tris-(8-hydroxyquinolinato)aluminum (Alq3)/CuI/ITO as a representative hole- and electron-transport material. The large work function of the CuI interlayer induces electron transfer from both molecules and ITO to CuI. As a result, CuI dramatically reduces the hole injection barrier (HIB) from ITO to NPB and Alq3 layers. Notably, CuI assists molecular ordering of the NPB layer, which would increase the intermolecular interaction, so would enhance the charge transport properties. Simultaneous enhancement in HIB and molecular ordering with the CuI interlayer would improve the device performance.

UR - http://www.scopus.com/inward/record.url?scp=84908042729&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84908042729&partnerID=8YFLogxK

U2 - 10.1016/j.orgel.2014.09.005

DO - 10.1016/j.orgel.2014.09.005

M3 - Article

AN - SCOPUS:84908042729

VL - 15

SP - 3298

EP - 3305

JO - Organic Electronics: physics, materials, applications

JF - Organic Electronics: physics, materials, applications

SN - 1566-1199

IS - 11

ER -