Elemental behaviors of InGaAs surface after treatment in aqueous solutions

Jihoon Na, Sangwoo Lim

Research output: Contribution to journalArticle

Abstract

Indium gallium arsenide (InGaAs) is one of the candidates as a channel material for the high-performance complementary metal-oxide-semiconductor (CMOS) devices superior to silicon-based CMOS devices because of its higher electron mobility. In order to introduce InGaAs as a new channel material for high-performance CMOS devices, it is important to prepare its surface to suppress material loss and surface oxide formation in the InGaAs layer. In this study, the behavior of each element of the In 0.53 Ga 0.47 As surface in chemical solutions such as HCl, NH 4 OH, HPM (HCl/H 2 O 2 /H 2 O) and APM (NH 4 OH/H 2 O 2 /H 2 O) was investigated from the viewpoint of thermodynamics and reaction kinetics. In the acidic HCl solution, the dissolution of the InGaAs surface was the dominant reaction, whereas a sub-oxide formed on the InGaAs surface in the basic NH 4 OH solution. The formation of the oxide on the surface was considered the rate-limiting step of the overall etching reaction of InGaAs in the acidic solution; therefore, the surface oxidation and overall etching (dissolution) of the InGaAs layer were determined using different amounts of H 2 O 2 in the solution. In particular, the overall etching of the InGaAs surface in the HPM solution was more aggressive than that in the APM solution. The behavior of InGaAs in the surface preparation process sequences with APM, HPM, and HF was also investigated, and it was observed that the material loss and surface roughening of the InGaAs layer were mostly determined in the HPM process. Finally, it was possible to suppress the surface oxidation, material loss, and surface roughening of the InGaAs layer by reducing the concentration of H 2 O 2 in the HPM solution.

Original languageEnglish
Pages (from-to)27-36
Number of pages10
JournalMicroelectronic Engineering
Volume212
DOIs
Publication statusPublished - 2019 May 1

Fingerprint

Indium
Gallium arsenide
surface treatment
gallium
indium
aqueous solutions
MOS devices
semiconductor devices
Oxides
Etching
CMOS
etching
oxides
gallium arsenide
dissolving
Dissolution
Oxidation
oxidation
Electron mobility
Silicon

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Electrical and Electronic Engineering

Cite this

@article{0e606ad002f54a9b85259df88e9efe45,
title = "Elemental behaviors of InGaAs surface after treatment in aqueous solutions",
abstract = "Indium gallium arsenide (InGaAs) is one of the candidates as a channel material for the high-performance complementary metal-oxide-semiconductor (CMOS) devices superior to silicon-based CMOS devices because of its higher electron mobility. In order to introduce InGaAs as a new channel material for high-performance CMOS devices, it is important to prepare its surface to suppress material loss and surface oxide formation in the InGaAs layer. In this study, the behavior of each element of the In 0.53 Ga 0.47 As surface in chemical solutions such as HCl, NH 4 OH, HPM (HCl/H 2 O 2 /H 2 O) and APM (NH 4 OH/H 2 O 2 /H 2 O) was investigated from the viewpoint of thermodynamics and reaction kinetics. In the acidic HCl solution, the dissolution of the InGaAs surface was the dominant reaction, whereas a sub-oxide formed on the InGaAs surface in the basic NH 4 OH solution. The formation of the oxide on the surface was considered the rate-limiting step of the overall etching reaction of InGaAs in the acidic solution; therefore, the surface oxidation and overall etching (dissolution) of the InGaAs layer were determined using different amounts of H 2 O 2 in the solution. In particular, the overall etching of the InGaAs surface in the HPM solution was more aggressive than that in the APM solution. The behavior of InGaAs in the surface preparation process sequences with APM, HPM, and HF was also investigated, and it was observed that the material loss and surface roughening of the InGaAs layer were mostly determined in the HPM process. Finally, it was possible to suppress the surface oxidation, material loss, and surface roughening of the InGaAs layer by reducing the concentration of H 2 O 2 in the HPM solution.",
author = "Jihoon Na and Sangwoo Lim",
year = "2019",
month = "5",
day = "1",
doi = "10.1016/j.mee.2019.04.002",
language = "English",
volume = "212",
pages = "27--36",
journal = "Microelectronic Engineering",
issn = "0167-9317",
publisher = "Elsevier",

}

Elemental behaviors of InGaAs surface after treatment in aqueous solutions. / Na, Jihoon; Lim, Sangwoo.

In: Microelectronic Engineering, Vol. 212, 01.05.2019, p. 27-36.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Elemental behaviors of InGaAs surface after treatment in aqueous solutions

AU - Na, Jihoon

AU - Lim, Sangwoo

PY - 2019/5/1

Y1 - 2019/5/1

N2 - Indium gallium arsenide (InGaAs) is one of the candidates as a channel material for the high-performance complementary metal-oxide-semiconductor (CMOS) devices superior to silicon-based CMOS devices because of its higher electron mobility. In order to introduce InGaAs as a new channel material for high-performance CMOS devices, it is important to prepare its surface to suppress material loss and surface oxide formation in the InGaAs layer. In this study, the behavior of each element of the In 0.53 Ga 0.47 As surface in chemical solutions such as HCl, NH 4 OH, HPM (HCl/H 2 O 2 /H 2 O) and APM (NH 4 OH/H 2 O 2 /H 2 O) was investigated from the viewpoint of thermodynamics and reaction kinetics. In the acidic HCl solution, the dissolution of the InGaAs surface was the dominant reaction, whereas a sub-oxide formed on the InGaAs surface in the basic NH 4 OH solution. The formation of the oxide on the surface was considered the rate-limiting step of the overall etching reaction of InGaAs in the acidic solution; therefore, the surface oxidation and overall etching (dissolution) of the InGaAs layer were determined using different amounts of H 2 O 2 in the solution. In particular, the overall etching of the InGaAs surface in the HPM solution was more aggressive than that in the APM solution. The behavior of InGaAs in the surface preparation process sequences with APM, HPM, and HF was also investigated, and it was observed that the material loss and surface roughening of the InGaAs layer were mostly determined in the HPM process. Finally, it was possible to suppress the surface oxidation, material loss, and surface roughening of the InGaAs layer by reducing the concentration of H 2 O 2 in the HPM solution.

AB - Indium gallium arsenide (InGaAs) is one of the candidates as a channel material for the high-performance complementary metal-oxide-semiconductor (CMOS) devices superior to silicon-based CMOS devices because of its higher electron mobility. In order to introduce InGaAs as a new channel material for high-performance CMOS devices, it is important to prepare its surface to suppress material loss and surface oxide formation in the InGaAs layer. In this study, the behavior of each element of the In 0.53 Ga 0.47 As surface in chemical solutions such as HCl, NH 4 OH, HPM (HCl/H 2 O 2 /H 2 O) and APM (NH 4 OH/H 2 O 2 /H 2 O) was investigated from the viewpoint of thermodynamics and reaction kinetics. In the acidic HCl solution, the dissolution of the InGaAs surface was the dominant reaction, whereas a sub-oxide formed on the InGaAs surface in the basic NH 4 OH solution. The formation of the oxide on the surface was considered the rate-limiting step of the overall etching reaction of InGaAs in the acidic solution; therefore, the surface oxidation and overall etching (dissolution) of the InGaAs layer were determined using different amounts of H 2 O 2 in the solution. In particular, the overall etching of the InGaAs surface in the HPM solution was more aggressive than that in the APM solution. The behavior of InGaAs in the surface preparation process sequences with APM, HPM, and HF was also investigated, and it was observed that the material loss and surface roughening of the InGaAs layer were mostly determined in the HPM process. Finally, it was possible to suppress the surface oxidation, material loss, and surface roughening of the InGaAs layer by reducing the concentration of H 2 O 2 in the HPM solution.

UR - http://www.scopus.com/inward/record.url?scp=85063999214&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063999214&partnerID=8YFLogxK

U2 - 10.1016/j.mee.2019.04.002

DO - 10.1016/j.mee.2019.04.002

M3 - Article

AN - SCOPUS:85063999214

VL - 212

SP - 27

EP - 36

JO - Microelectronic Engineering

JF - Microelectronic Engineering

SN - 0167-9317

ER -