Embedding-based neural network models for book recommendation in university libraries

Jaeyoung Choi, Chaeeun Han, Heeyoon Yang, Yeonkyoung Hong, Seoyoung Jeon, Yongjun Zhu

Research output: Contribution to journalConference articlepeer-review

Abstract

Recommendation systems have been widely used in various commercial applications for predicting the rating a user may give to an item. To encourage students to read more books, personalized book recommendation systems are of great interest in university libraries. Because university libraries do not ask students to rate books that they borrowed, book reviews and ratings are not available. Without book ratings, implementing personalized book recommendation systems in libraries is a challenging problem. In this study, we propose a library book recommendation system that uses embedding based neural network models. The system uses book metadata and user information as input features and deep learning models were used to create embeddings of the features. A multi-class classification model and a multi-label classification model were trained and soft voting was used to integrate the final outcomes. The performance of the models was evaluated by 72 university students and the multi-class classification model received 3.4 average points whereas the multi-label classification model scored 3.0 average points in the 5-Point Likert Scale.

Original languageEnglish
Pages (from-to)25-32
Number of pages8
JournalCEUR Workshop Proceedings
Volume2871
Publication statusPublished - 2021
Event1st Workshop on AI + Informetrics, AII 2021 - Virtual, Online
Duration: 2021 Mar 17 → …

Bibliographical note

Publisher Copyright:
© 2021 CEUR-WS. All rights reserved.

All Science Journal Classification (ASJC) codes

  • Computer Science(all)

Fingerprint

Dive into the research topics of 'Embedding-based neural network models for book recommendation in university libraries'. Together they form a unique fingerprint.

Cite this