TY - JOUR
T1 - Energy Level-Graded Al-Doped ZnO Protection Layers for Copper Nanowire-Based Window Electrodes for Efficient Flexible Perovskite Solar Cells
AU - Yang, Hyunha
AU - Kwon, Hyeok Chan
AU - Ma, Sunihl
AU - Kim, Kyungmi
AU - Yun, Seong Cheol
AU - Jang, Gyumin
AU - Park, Jaemin
AU - Lee, Hyungsoo
AU - Goh, Sukyoung
AU - Moon, Jooho
N1 - Funding Information:
This work was supported by a grant from the National Research Foundation of Korea funded by the Korean government (MISP) (no. 2012R1A3A2026417).
PY - 2020/3/25
Y1 - 2020/3/25
N2 - Flexible perovskite solar cells (PSCs) have attracted significant interest as promising candidates for portable and wearable devices. Copper nanowires (CuNWs) are promising candidates for transparent conductive electrodes for flexible PSCs because of their excellent conductivity, flexibility, and cost-effectiveness. However, because of the thermal/chemical instability of CuNWs, they require a protective layer for application in PSCs. Previous PSCs with CuNW-based electrodes generally exhibited poor performances compared with their indium tin oxide-based counterparts because of the neglect of the interfacial energetics between the electron transport layer (ETL) and CuNWs. Herein, an Al-doped ZnO (AZO) protective layer fabricated using atomic layer deposition is introduced. The AZO/CuNW-based composite electrode exhibits improved thermal/chemical stability and favorable band alignment between the ETL and CuNWs, based on the Al dopant concentration tuning. As a result, the Al content gradient AZO (g-AZO), composed of three successively deposited AZO layers, leads to highly efficient flexible PSCs with a power conversion efficiency (PCE) of 14.18%, whereas the PCE of PSCs with a non-g-AZO layer is 12.34%. This improvement can be attributed to the efficient electron extraction and reduced charge recombination. Furthermore, flexible PSCs based on g-AZO-based composite electrodes retain their initial PCE, even after 600 bending cycles, demonstrating excellent mechanical stability.
AB - Flexible perovskite solar cells (PSCs) have attracted significant interest as promising candidates for portable and wearable devices. Copper nanowires (CuNWs) are promising candidates for transparent conductive electrodes for flexible PSCs because of their excellent conductivity, flexibility, and cost-effectiveness. However, because of the thermal/chemical instability of CuNWs, they require a protective layer for application in PSCs. Previous PSCs with CuNW-based electrodes generally exhibited poor performances compared with their indium tin oxide-based counterparts because of the neglect of the interfacial energetics between the electron transport layer (ETL) and CuNWs. Herein, an Al-doped ZnO (AZO) protective layer fabricated using atomic layer deposition is introduced. The AZO/CuNW-based composite electrode exhibits improved thermal/chemical stability and favorable band alignment between the ETL and CuNWs, based on the Al dopant concentration tuning. As a result, the Al content gradient AZO (g-AZO), composed of three successively deposited AZO layers, leads to highly efficient flexible PSCs with a power conversion efficiency (PCE) of 14.18%, whereas the PCE of PSCs with a non-g-AZO layer is 12.34%. This improvement can be attributed to the efficient electron extraction and reduced charge recombination. Furthermore, flexible PSCs based on g-AZO-based composite electrodes retain their initial PCE, even after 600 bending cycles, demonstrating excellent mechanical stability.
UR - http://www.scopus.com/inward/record.url?scp=85082396635&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85082396635&partnerID=8YFLogxK
U2 - 10.1021/acsami.9b21290
DO - 10.1021/acsami.9b21290
M3 - Article
C2 - 32134237
AN - SCOPUS:85082396635
VL - 12
SP - 13824
EP - 13835
JO - ACS applied materials & interfaces
JF - ACS applied materials & interfaces
SN - 1944-8244
IS - 12
ER -