Engineered magnetic plant biobots for nerve agent removal

Su Jin Song, Carmen C. Mayorga-Martinez, Dalibor Huska, Martin Pumera

Research output: Contribution to journalArticlepeer-review

Abstract

Biohybrid micro/nanorobots that integrate biological entities with artificial nanomaterials have shown great potential in the field of biotechnology. However, commonly used physical hybridization approaches can lead to blockages and damage to biological interfaces, impeding the optimal exploitation of natural abilities. Here, we show that magnetically propelled plant biobots (MPBs), employing tomato-callus cultivation engineering in the presence of Fe3O4 nanoparticles (NPs), are capable of active movement and directional guidance under a transversal rotating magnetic field. The Fe3O4 NPs were transported through the cell growth media and then taken up into the plant tissue cells (PTCs), imparting the plant biobot with magnetic function. Moreover, Fe ions support the growth of callus cells, resulting in nanoparticle incorporation and enabling faster growth and structurally compact texture. The magnetic plant biobots demonstrated rapid and efficient removal of chlorpyrifos (approximately 80%), a hazardous nerve gas agent that causes severe acute toxicity, and recovery using an external magnetic field. The eco-friendly plant biobots described here demonstrate their potential in biomedical and environmental applications.

Original languageEnglish
Article number79
JournalNPG Asia Materials
Volume14
Issue number1
DOIs
Publication statusPublished - 2022 Dec

Bibliographical note

Funding Information:
This work was supported by the project Advanced Functional Nanorobots (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR).

Publisher Copyright:
© 2022, The Author(s).

All Science Journal Classification (ASJC) codes

  • Modelling and Simulation
  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Engineered magnetic plant biobots for nerve agent removal'. Together they form a unique fingerprint.

Cite this