Enhanced brightness of methylammonium lead tribromide perovskite microcrystal-based green light-emitting diodes by adding hydrophilic polyvinylpyrrolidone with oleic acid-modified ZnO quantum dot electron transporting layer

Yun Cheol Kim, Sung Doo Baek, Jae Min Myoung

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

In designing highly efficient perovskite light-emitting diodes (PeLEDs), the most significant process is to deposit perovskite film without pinholes and vacancies because discontinuous film results in high leakage current. To fabricate a continuous methylammonium lead tribromide (MAPbBr3) film, a hydrophilic polymer, polyvinylpyrrolidone (PVP), was added to the MAPbBr3 precursor solution. Due to the increased wettability of the precursor solution, a full surface coverage of MAPbBr3-PVP composite film without pinholes was produced. Moreover, zinc oxide (ZnO) quantum dot (QD) was synthesized by hydrothermal process in order to use as an electron transporting layer (ETL), and surface modification of QD was performed by oleic acid (OA) molecules in order to increase spatial distribution in the anti-solvent of perovskite. It was found that, due to the reduced agglomeration of QDs during a spin-coating process, a smooth and highly transparent OA-modified ZnO (OA-ZnO) QD layer was obtained. Thus, the PeLED prepared by using MAPbBr3-PVP composite film and OA-ZnO QD layer exhibited an excellent device performance of a maximum luminance of 11095.1 cd m−2 at 6 V and a maximum current efficiency of 6.79 cd A−1 at 4 V. Therefore, it is believed that adding PVP to perovskite materials and using OA-ZnO QD layer as an ETL are effective way to develop perovskite-based high performance LEDs.

Original languageEnglish
Pages (from-to)11-17
Number of pages7
JournalJournal of Alloys and Compounds
Volume786
DOIs
Publication statusPublished - 2019 May 25

Fingerprint

Zinc Oxide
Povidone
Microcrystals
Oleic acid
Oleic Acid
Zinc oxide
Perovskite
Semiconductor quantum dots
Light emitting diodes
Luminance
Lead
Electrons
Composite films
Spin coating
Leakage currents
Spatial distribution
Vacancies
Wetting
Surface treatment
methylamine

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Cite this

@article{422973bbbc714fa8a36283654f3a4d23,
title = "Enhanced brightness of methylammonium lead tribromide perovskite microcrystal-based green light-emitting diodes by adding hydrophilic polyvinylpyrrolidone with oleic acid-modified ZnO quantum dot electron transporting layer",
abstract = "In designing highly efficient perovskite light-emitting diodes (PeLEDs), the most significant process is to deposit perovskite film without pinholes and vacancies because discontinuous film results in high leakage current. To fabricate a continuous methylammonium lead tribromide (MAPbBr3) film, a hydrophilic polymer, polyvinylpyrrolidone (PVP), was added to the MAPbBr3 precursor solution. Due to the increased wettability of the precursor solution, a full surface coverage of MAPbBr3-PVP composite film without pinholes was produced. Moreover, zinc oxide (ZnO) quantum dot (QD) was synthesized by hydrothermal process in order to use as an electron transporting layer (ETL), and surface modification of QD was performed by oleic acid (OA) molecules in order to increase spatial distribution in the anti-solvent of perovskite. It was found that, due to the reduced agglomeration of QDs during a spin-coating process, a smooth and highly transparent OA-modified ZnO (OA-ZnO) QD layer was obtained. Thus, the PeLED prepared by using MAPbBr3-PVP composite film and OA-ZnO QD layer exhibited an excellent device performance of a maximum luminance of 11095.1 cd m−2 at 6 V and a maximum current efficiency of 6.79 cd A−1 at 4 V. Therefore, it is believed that adding PVP to perovskite materials and using OA-ZnO QD layer as an ETL are effective way to develop perovskite-based high performance LEDs.",
author = "Kim, {Yun Cheol} and Baek, {Sung Doo} and Myoung, {Jae Min}",
year = "2019",
month = "5",
day = "25",
doi = "10.1016/j.jallcom.2019.01.317",
language = "English",
volume = "786",
pages = "11--17",
journal = "Journal of Alloys and Compounds",
issn = "0925-8388",
publisher = "Elsevier BV",

}

TY - JOUR

T1 - Enhanced brightness of methylammonium lead tribromide perovskite microcrystal-based green light-emitting diodes by adding hydrophilic polyvinylpyrrolidone with oleic acid-modified ZnO quantum dot electron transporting layer

AU - Kim, Yun Cheol

AU - Baek, Sung Doo

AU - Myoung, Jae Min

PY - 2019/5/25

Y1 - 2019/5/25

N2 - In designing highly efficient perovskite light-emitting diodes (PeLEDs), the most significant process is to deposit perovskite film without pinholes and vacancies because discontinuous film results in high leakage current. To fabricate a continuous methylammonium lead tribromide (MAPbBr3) film, a hydrophilic polymer, polyvinylpyrrolidone (PVP), was added to the MAPbBr3 precursor solution. Due to the increased wettability of the precursor solution, a full surface coverage of MAPbBr3-PVP composite film without pinholes was produced. Moreover, zinc oxide (ZnO) quantum dot (QD) was synthesized by hydrothermal process in order to use as an electron transporting layer (ETL), and surface modification of QD was performed by oleic acid (OA) molecules in order to increase spatial distribution in the anti-solvent of perovskite. It was found that, due to the reduced agglomeration of QDs during a spin-coating process, a smooth and highly transparent OA-modified ZnO (OA-ZnO) QD layer was obtained. Thus, the PeLED prepared by using MAPbBr3-PVP composite film and OA-ZnO QD layer exhibited an excellent device performance of a maximum luminance of 11095.1 cd m−2 at 6 V and a maximum current efficiency of 6.79 cd A−1 at 4 V. Therefore, it is believed that adding PVP to perovskite materials and using OA-ZnO QD layer as an ETL are effective way to develop perovskite-based high performance LEDs.

AB - In designing highly efficient perovskite light-emitting diodes (PeLEDs), the most significant process is to deposit perovskite film without pinholes and vacancies because discontinuous film results in high leakage current. To fabricate a continuous methylammonium lead tribromide (MAPbBr3) film, a hydrophilic polymer, polyvinylpyrrolidone (PVP), was added to the MAPbBr3 precursor solution. Due to the increased wettability of the precursor solution, a full surface coverage of MAPbBr3-PVP composite film without pinholes was produced. Moreover, zinc oxide (ZnO) quantum dot (QD) was synthesized by hydrothermal process in order to use as an electron transporting layer (ETL), and surface modification of QD was performed by oleic acid (OA) molecules in order to increase spatial distribution in the anti-solvent of perovskite. It was found that, due to the reduced agglomeration of QDs during a spin-coating process, a smooth and highly transparent OA-modified ZnO (OA-ZnO) QD layer was obtained. Thus, the PeLED prepared by using MAPbBr3-PVP composite film and OA-ZnO QD layer exhibited an excellent device performance of a maximum luminance of 11095.1 cd m−2 at 6 V and a maximum current efficiency of 6.79 cd A−1 at 4 V. Therefore, it is believed that adding PVP to perovskite materials and using OA-ZnO QD layer as an ETL are effective way to develop perovskite-based high performance LEDs.

UR - http://www.scopus.com/inward/record.url?scp=85060739784&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85060739784&partnerID=8YFLogxK

U2 - 10.1016/j.jallcom.2019.01.317

DO - 10.1016/j.jallcom.2019.01.317

M3 - Article

AN - SCOPUS:85060739784

VL - 786

SP - 11

EP - 17

JO - Journal of Alloys and Compounds

JF - Journal of Alloys and Compounds

SN - 0925-8388

ER -