Enhanced cooling effectiveness in full-coverage film cooling system with impingement jets

Sang Hyun Oh, Dong Hyun Lee, Kyung Min Kim, Moon Young Kim, Hyung Hee Cho

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Citations (Scopus)


An experimental investigation is conducted on the cooling effectiveness of full-coverage film cooled wall with impingement jets. Film cooling plate is made of stainless steel, thus the adiabatic film cooling effectiveness and the cooling effect of impingement jet underneath the film cooling plate are comprised in the cooling effectiveness. Infra-red camera is used to measure the temperature of film cooled surfaces. Experiments are conducted with different film cooling hole angles, such as 35° and 90°. Diameters of both film cooling holes and impinging jet holes are 5 mm. The jet Reynolds number base on the hole diameter (Red) ranges from 3,000 to 5,000 and equivalent blowing ratios (M) varies from 0.3 to 0.5, respectively. The distance between the injection plate and the film cooling plate is 1, 3 and 5 times of the hole diameter. The streamwise and spanwise hole spacing to the hole diameter ratio (p/d) are 3 for both the film cooling hole plate and the impingement jet hole plate. The 35° angled film cooling hole arrangement shows higher film cooling effectiveness than the 90° film cooling hole arrangement. As the blowing ratio increases, the cooling effectiveness is enhanced for both the 35° and 90° film cooling hole configurations. For the normal film cooling hole, the film cooling effectiveness is almost constant regardless of H/d, while H/d =1 shows a minimum value for the angled film cooling hole.

Original languageEnglish
Title of host publication2008 Proceedings of the ASME Turbo Expo
Subtitle of host publicationPower for Land, Sea, and Air
Number of pages10
EditionPART A
Publication statusPublished - 2008
Event2008 ASME Turbo Expo - 2008 ASME Turbo Expo, Germany
Duration: 2008 Jun 92008 Jun 13

Publication series

NameProceedings of the ASME Turbo Expo
NumberPART A


Other2008 ASME Turbo Expo
City2008 ASME Turbo Expo

All Science Journal Classification (ASJC) codes

  • Engineering(all)


Dive into the research topics of 'Enhanced cooling effectiveness in full-coverage film cooling system with impingement jets'. Together they form a unique fingerprint.

Cite this