Abstract
The application of ion gels as gate dielectrics having an excellent mechanical flexibility and high capacitance to molybdenum disulfide (MoS2) devices has been extensively studied; however, some issues remain unaddressed with regard to device stability such as gate leakage current, hysteresis, and bias stress instability. This study suggests a fabrication process for the ionic gating of the MoS2 device to enhance the device stability by laminating the ion gel film onto the MoS2 transistor using a cut-and-stick method and adding a passivation layer to remove unintentional parasitic capacitances generated by the capacitive coupling effect. The ionic gating MoS2 transistor fabricated via this process operates at a low voltage (<1 V) and exhibits superior electrical characteristics such as low gate leakage currents (≈10−11 A), high on–off ratio (>106), and low hysteresis (<0.05 V). To further investigate the device stability, bias stress instability of the ionic gating MoS2 transistor is examined. The charge-trapping mechanism is the main cause of threshold voltage shifts under gate bias stress.
Original language | English |
---|---|
Article number | 1900142 |
Journal | Physica Status Solidi - Rapid Research Letters |
Volume | 13 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2019 Sept 1 |
Bibliographical note
Funding Information:This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (no. 2017R1E1A1A01074087).
Publisher Copyright:
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Condensed Matter Physics