Enhanced glycogen synthase kinase-3β activity mediates podocyte apoptosis under diabetic conditions

Jisun Paeng, Jae Hyun Chang, Sun Ha Lee, Bo Young Nam, Hye Young Kang, Seonghun Kim, Hyung Jung Oh, Jung Tak Park, Seung Hyeok Han, Tae Hyun Yoo, Shin Wook Kang

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)


Glycogen synthase kinase-3β (GSK-3β) is involved in the pathogenesis of various kidney diseases. This study was undertaken to examine the changes in GSK-3β activity in podocytes under diabetic conditions and to elucidate the functional role of GSK-3β in podocyte apoptosis. In vivo, 32 rats were injected with either diluent (n = 16, C) or with streptozotocin intraperitoneally (n = 16, DM), and 8 rats from each group were treated with 6-bromoindirubin-3′-oxime (BIO) for 3 months. In vitro, immortalized mouse podocytes were exposed to 5.6 mM glucose or 30 mM glucose (HG) with or without 10 μM BIO. Western blot analysis and TUNEL or Hoechst 33342 staining were performed to identify apoptosis. Urinary albumin excretion was significantly higher in DM rats, and this increase was significantly abrogated in DM rats by BIO treatment. The protein expression of Tyr216-phospho-GSK-3β was significantly increased in DM glomeruli and in cultured podocytes exposed to HG. Western blot analysis revealed that the protein expression of Bax and active fragments of caspase-3 were significantly increased, whereas phospho-Akt, β-catenin, and Bcl-2 protein expression were significantly decreased in DM glomeruli and HG-stimulated podocytes. Apoptosis, determined by TUNEL assay and Hoechst 33342 staining, was also significantly increased in podocytes under diabetic conditions. The changes in the expression of apoptosis-related molecules and the increase in the number of apoptotic cells in DM glomeruli as well as in HG-stimulated podocytes were significantly ameliorated by BIO. These findings suggest that enhanced GSK-3β activity within podocytes under diabetic conditions is associated with podocyte loss in diabetic nephropathy.

Original languageEnglish
Pages (from-to)1678-1690
Number of pages13
Issue number12
Publication statusPublished - 2014 Nov 8

Bibliographical note

Funding Information:
Acknowledgments This work was supported by the Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. NRF-2011-0030086), and a grant of the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (HI12C0646).

Publisher Copyright:
© 2014 Springer Science+Business Media New York.

All Science Journal Classification (ASJC) codes

  • Pharmacology
  • Pharmaceutical Science
  • Clinical Biochemistry
  • Cell Biology
  • Biochemistry, medical
  • Cancer Research


Dive into the research topics of 'Enhanced glycogen synthase kinase-3β activity mediates podocyte apoptosis under diabetic conditions'. Together they form a unique fingerprint.

Cite this