Enhancement of in vivo endothelialization of tissue-engineered vascular grafts by granulocyte colony-stimulating factor

Seung-Woo Cho, Joung Eun Lim, Hun Su Chu, Hye Jin Hyun, Cha Yong Choi, Ki Chul Hwang, Kyung Jong Yoo, Dong Ik Kim, Byung Soo Kim

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

Successful reconstruction of large-diameter blood vessel in humans has been demonstrated using the tissue engineering technique, but improvement in patency of small-diameter bioartificial vascular graft remains a great challenge. This study reports that granulocyte colony-stimulating factor (G-CSF) can enhance in vivo endothelialization of tissue-engineered vascular grafts, which could be used to improve patency of small-diameter vascular graft. Vascular grafts were tissue engineered with decellularized canine abdominal aortas and canine autologous bone marrow-derived cells. Prior to cell seeding onto decellularized graft matrices, bone marrow-derived cells were induced to differentiate into endothelial cells and smooth muscle cells. The cell-seeded vascular grafts were implanted into the abdominal aortas of bone marrow donor dogs. Before and after graft implantation, G-CSF was administered subcutaneously to the dogs (n = 3). The grafts implanted into the dogs not receiving G-CSF were used as controls (n = 3). Eight weeks after implantation, grafts in both groups showed regeneration of vascular tissues including endothelium and smooth muscle. Importantly, endothelium formation was more extensive in the G-CSF-treated grafts than in the control grafts, as assessed with reverse transcription polymerase chain reaction, western blot, and immunohistochemistry. In addition, intimal hyperplasia was significantly reduced in the G-CSF-treated grafts compared to the control grafts. This study suggests that G-CSF administration could be applied to improve patency of small-diameter tissue-engineered vascular grafts.

Original languageEnglish
Pages (from-to)252-263
Number of pages12
JournalJournal of Biomedical Materials Research - Part A
Volume76
Issue number2
DOIs
Publication statusPublished - 2006 Feb 1

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Biomaterials
  • Biomedical Engineering
  • Metals and Alloys

Cite this