TY - GEN
T1 - Enhancing TCP end-to-end performance in millimeter-wave communications
AU - Kim, Minho
AU - Ko, Seung Woo
AU - Kim, Seong Lyun
N1 - Publisher Copyright:
© 2017 IEEE.
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2018/2/14
Y1 - 2018/2/14
N2 - Recently, millimeter-wave (mmWave) communications have received great attention due to the availability of large spectrum resources. Nevertheless, their impact on TCP performance has been overlooked, which is observed that the said TCP performance collapse occurs owing to the significant difference in signal quality between LOS and NLOS links. We propose a novel TCP design for mmWave communications, a mmWave performance enhancing proxy (mmPEP), enabling not only to overcome TCP performance collapse but also exploit the properties of mmWave channels. The base station installs the TCP proxy to operate the two functionalities called Ack management and batch retransmission. Specifically, the proxy sends the said early-Ack to the server not to decrease its sending rate even in the NLOS status. In addition, when a packet-loss is detected, the proxy retransmits not only lost packets but also the certain number of the following packets expected to be lost too. It is verified by ns-3 simulation that compared with benchmark, mmPEP enhances the end-to-end rate and packet delivery ratio by maintaining high sending rate with decreasing the loss recovery time.
AB - Recently, millimeter-wave (mmWave) communications have received great attention due to the availability of large spectrum resources. Nevertheless, their impact on TCP performance has been overlooked, which is observed that the said TCP performance collapse occurs owing to the significant difference in signal quality between LOS and NLOS links. We propose a novel TCP design for mmWave communications, a mmWave performance enhancing proxy (mmPEP), enabling not only to overcome TCP performance collapse but also exploit the properties of mmWave channels. The base station installs the TCP proxy to operate the two functionalities called Ack management and batch retransmission. Specifically, the proxy sends the said early-Ack to the server not to decrease its sending rate even in the NLOS status. In addition, when a packet-loss is detected, the proxy retransmits not only lost packets but also the certain number of the following packets expected to be lost too. It is verified by ns-3 simulation that compared with benchmark, mmPEP enhances the end-to-end rate and packet delivery ratio by maintaining high sending rate with decreasing the loss recovery time.
UR - http://www.scopus.com/inward/record.url?scp=85045268176&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85045268176&partnerID=8YFLogxK
U2 - 10.1109/PIMRC.2017.8292745
DO - 10.1109/PIMRC.2017.8292745
M3 - Conference contribution
AN - SCOPUS:85045268176
T3 - IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC
SP - 1
EP - 5
BT - 2017 IEEE International Symposium on Personal, Indoor and Mobile Radio Communications
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 28th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2017
Y2 - 8 October 2017 through 13 October 2017
ER -