Ensemble learning of genetic networks from time-series expression data

Dougu Nam, Sung Ho Yoon, Jihyun F. Kim

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Motivation: Inferring genetic networks from time-series expression data has been a great deal of interest. In most cases, however, the number of genes exceeds that of data points which, in principle, makes it impossible to recover the underlying networks. To address the dimensionality problem, we apply the subset selection method to a linear system of difference equations. Previous approaches assign the single most likely combination of regulators to each target gene, which often causes over-fitting of the small number of data. Results: Here, we propose a new algorithm, named LEARNe, which merges the predictions from all the combinations of regulators that have a certain level of likelihood. LEARNe provides more accurate and robust predictions than previous methods for the structure of genetic networks under the linear system model. We tested LEARNe for reconstructing the SOS regulatory network of Escherichia coli and the cell cycle regulatory network of yeast from real experimental data, where LEARNe also exhibited better performances than previous methods.

Original languageEnglish
Pages (from-to)3225-3231
Number of pages7
JournalBioinformatics
Volume23
Issue number23
DOIs
Publication statusPublished - 2007 Dec

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Computational Theory and Mathematics
  • Computational Mathematics

Fingerprint Dive into the research topics of 'Ensemble learning of genetic networks from time-series expression data'. Together they form a unique fingerprint.

  • Cite this