Ensuring renewable energy utilization with quality of service guarantee for energy-efficient data center operations

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

The reduction of greenhouse emissions is becoming a major goal of energy-intensive industries, such as data centers, and there have been significant efforts to achieve sustainable operations by meeting electricity consumption using renewable energy generations. Specifically, it has been a common practice for data centers to use renewable energy via on-site solar power generation to directly offset electricity consumption by renewable energy to contribute to environmental sustainability. However, the introduction of intermittent and non-dispatchable renewable energy generations for powering data centers that generally host time-varying workloads presents a significant challenge, and thus, this study mainly focuses on how to improve renewable energy utilization for data center operations considering the integration of co-located solar power generation and battery energy storage. The main objective is to develop a mathematical optimization model for energy-efficient and sustainable data center operations to minimize energy cost while ensuring the desired level of renewable energy utilization and the required quality of service guarantee. In particular, this study proposes a two-stage stochastic program integrated with an expected-value constraint and a chance constraint, and an integer programming and sampling-based approach are adopted to solve the problem to investigate optimal data center operations. The comprehensive numerical experiments are conducted to evaluate the proposed model compared with benchmark models for various parameter settings, and the results show that the proposed model can be successfully implemented to enable data centers to achieve the desired renewable energy utilization while improving energy efficiency.

Original languageEnglish
Article number115424
JournalApplied Energy
Volume276
DOIs
Publication statusPublished - 2020 Oct 15

Bibliographical note

Publisher Copyright:
© 2020 Elsevier Ltd

All Science Journal Classification (ASJC) codes

  • Building and Construction
  • Mechanical Engineering
  • Energy(all)
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'Ensuring renewable energy utilization with quality of service guarantee for energy-efficient data center operations'. Together they form a unique fingerprint.

Cite this