Epitaxial and polycrystalline Hf Nx (0.8≤x≤1.5) layers on MgO(001): Film growth and physical properties

H. S. Seo, T. Y. Lee, I. Petrov, J. E. Greene, D. Gall

Research output: Contribution to journalArticlepeer-review

87 Citations (Scopus)

Abstract

While many transition metal (TM) nitrides-including TiN, ZrN, and TaN-have been widely studied and are currently used as hard wear-resistant coatings, diffusion barriers, and optical coatings, little is known about a related TM nitride, HfN. Here, we report the results of a systematic investigation of the growth and physical properties of Hf Nx layers, with 0.80≤x≤1.50, deposited on MgO(001) by ultrahigh vacuum reactive magnetron sputtering at 650°C in mixed N2 Ar discharges. Hf Nx layers with 0.80≤x≤1.20 crystallize in the B1-NaCl structure with a cube-on-cube epitaxial relationship to the MgO(001) substrate, while films with 1.24≤x≤1.50 contain a N-rich second phase. The relaxed bulk lattice parameter of Hf Nx (001) decreases only slightly with increasing NHf ratio, ranging from 0.4543 nm with x=0.80 to 0.4517 nm with x=1.20. The room-temperature resistivity ρ of stoichiometric HfN(001) is 14.2 μΩ cm and ρ (x) increases with both increasing and decreasing x to 140 μΩ cm with x=0.80 and 26.4 μΩ cm with x=1.20. The hardness H and elastic modulus E of HfN(001) are 25.2 and 450 GPa, respectively. H (x) initially increases for both over- and understoichiometric layers due to defect-induced hardening, while E (x) remains essentially constant. Single-phase Hf Nx (001) is metallic with a positive temperature coefficient of resistivity (TCR) between 50 and 300 K and a temperature- independent carrier density. It is also superconducting with the highest critical temperature, 9.18 K, obtained for layers with x=1.00. In the two phase regime, ρ ranges from 59.8 μΩ cm with x=1.24 to 2710 μΩ cm with x=1.50. TCR becomes positive with x≤1.38, no superconducting transition is observed, and both H and E decrease.

Original languageEnglish
Article number083521
JournalJournal of Applied Physics
Volume97
Issue number8
DOIs
Publication statusPublished - 2005 Apr 27

Bibliographical note

Funding Information:
This research was supported by the U.S. Department of Energy, Division of Materials Science, under Grant No. DEFG02-91ER45439 through the University of Illinois Frederick Seitz Materials Research Laboratory (FS-MRL). The authors also appreciate the use of the facilities of the FS-MRL Center for Microanalysis of Materials, which is partially supported by DOE, at the University of Illinois.

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Epitaxial and polycrystalline Hf Nx (0.8≤x≤1.5) layers on MgO(001): Film growth and physical properties'. Together they form a unique fingerprint.

Cite this