Error estimation of the Gaussian ML classifier

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

We investigate the relationship between the classification error and the Bhattacharyya distance of two normally distributed classes and propose a new formula which provides a much better error estimation of the Gaussian ML classifier.

Original languageEnglish
Title of host publicationProceedings - 1997 IEEE International Symposium on Information Theory, ISIT 1997
Pages535
Number of pages1
DOIs
Publication statusPublished - 1997
Event1997 IEEE International Symposium on Information Theory, ISIT 1997 - Ulm, Germany
Duration: 1997 Jun 291997 Jul 4

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Other

Other1997 IEEE International Symposium on Information Theory, ISIT 1997
CountryGermany
CityUlm
Period97/6/2997/7/4

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modelling and Simulation
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Error estimation of the Gaussian ML classifier'. Together they form a unique fingerprint.

  • Cite this

    Lee, C. (1997). Error estimation of the Gaussian ML classifier. In Proceedings - 1997 IEEE International Symposium on Information Theory, ISIT 1997 (pp. 535). [613472] (IEEE International Symposium on Information Theory - Proceedings). https://doi.org/10.1109/ISIT.1997.613472