Abstract
Ferroelectric memristors offer a significant alternative to their redox-based analogs in resistive random access memory because a ferroelectric tunnel junction (FTJ) exhibits a memristive effect that induces resistive switching (RS) regardless of the operating current level. This RS results from a change in the ferroelectric polarization direction, allowing the FTJ to overcome the restriction encountered in redox-based memristors. Herein, the memristive effect of an FTJ was investigated by ultraviolet-visible (UV-Vis) absorption spectroscopy using a removable mercury (Hg) top electrode (TE), BaTiO3 (BTO) ferroelectric tunnel layer, La0.7Sr0.3MnO3 (LSMO) semiconductor bottom electrode, and wide-bandgap quartz (100) single-crystal substrate to determine the low-resistance state (LRS) and high-resistance state (HRS) of the FTJ. A BTO (110)/LSMO (110) polycrystal memristor involving a Hg TE showed a small memristive effect (switching ratio). This effect decreased with increasing read voltage because of a small potential barrier height. The LRS and HRS of the FTJ showed quasi-similar UV-Vis absorption spectra, consistent with the small energy difference between the valence-band maximum of BTO and Fermi level of LSMO near the interface between the LRS and HRS. This energy difference stemmed from the ferroelectric polarization and charge-screening effect of LSMO based on an electrostatic model of the FTJ.
Original language | English |
---|---|
Article number | 215704 |
Journal | Nanotechnology |
Volume | 27 |
Issue number | 21 |
DOIs | |
Publication status | Published - 2016 Apr 18 |
Bibliographical note
Publisher Copyright:© 2016 IOP Publishing Ltd.
All Science Journal Classification (ASJC) codes
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering