Evaluation of trapping mechanisms in geologic CO2 sequestration: Case study of SACROC northern platform, A 35-year CO2 injection site

Weon Shik Han, Brian J. McPherson, Peter C. Lichtner, Fred P. Wang

Research output: Contribution to journalArticle

64 Citations (Scopus)

Abstract

CO2 trapping mechanisms in geologic sequestration are the specific processes that hold CO2 underground in porous formations after it is injected. The main trapping mechanisms of interest include (1) fundamental confinement of mobile CO2 phase under low-permeability caprocks, or stratigraphic trapping, (2) conversion of CO2 to mineral precipitates, or mineral trapping, (3) dissolution in in situ fluid, or solubility trapping, and (4) trapping by surface tension (capillary force) and, correspondingly, remaining in porous media as an immobile CO2 phase, or residual CO2 trapping. The purpose of this work is to evaluate and quantify the competing roles of these different trapping mechanisms, including the relative amounts of storage by each. For the sake of providing a realistic appraisal, we conducted our analyses on a case study site, the SACROC Unit in the Permian basin of western Texas. CO2 has been injected in the subsurface at the SACROC Unit for more than 35 years for the purpose of enhanced oil recovery. Our analysis of the SACROC production and injection history data suggests that about 93 million metric tons of CO2 were injected and about 38 million metric tons were produced from 1972 to 2005. As a result, a simple massbalance suggests that the SACROC Unit has accumulated approximately 55 million metric tons of CO2. Our study specifically focuses on the northern platform area of the SACROC Unit where about 7 million metric tons of CO2 is stored. In the model describing the SACROC northern platform, porosity distributions were defined from extensive analyses of both 3-D seismic surveys and calibrated well logging data from 368 locations. Permeability distributions were estimated from determined porosity fields using a rock-fabric classification approach. The developed 3-D geocellular model representing the SACROC northern platform consists of over 9.4 million elements that characterize detailed 3-D heterogeneous reservoir geology. To facilitate simulation using conventional personal computers, we upscaled the 9.4 million elements model using a "renormalization" technique to reduce it to 15,470 elements. Analysis of groundwater chemistry from both the oil production formations (Cisco and Canyon Groups) and the formation above the sealing caprock suggests that the Wolfcamp Shale Formation performs well as a caprock at the SACROC Unit. However, results of geochemical mixing models also suggest that a small amount of shallow groundwater may be contaminated by reservoir brine possibly due to: (1) downward recharge of recycled reservoir brine from brine pits at the surface, or (2) upward leakage of CO2-saturated reservoir brine through the Wolfcamp Shale Formation. Using the upscaled 3-D geocellular model with detailed fluid injection/production history data and a vast amount of field data, we developed two separate models to evaluate competing CO2 trapping mechanisms at the SACROC northern platform. The first model simulated CO2 trapping mechanisms in a reservoir saturated with brine only. The second model simulated CO2 trapping mechanisms in a reservoir saturated with both brine and oil. CO2 trapping mechanisms in the brine-only model show distinctive stages accompanying injection and post-injection periods. In the 30-yearinjection period from 1972 to 2002, the amount of mobile CO2 increased to 5.0 million metric tons without increasing immobile CO2, and the mass of solubility-trapped CO 2 sharply rose to 1.7 million metric tons. After CO2 injection ceased, the amount of mobile CO2 dramatically decreased and the amount of immobile CO2 increased. Relatively small amounts of mineral precipitation (less than 0.2 million metric tons of CO2 equivalent) occurred after 200 years. In the brine-plus-oil model, dissolution of CO2 in oil (oil-solubility trapping) and mobile CO2 dominated during the entire simulation period. While supercritical-phase CO 2 is mobile near the injection wells due to the high CO2 saturation, it behaves like residually trapped CO2 because of the small density contrast between oil and CO2. In summary, the brine-only model reflected dominance by residual CO2 trapping over the long term, while CO2 in the brine-plusoil model was dominated by oil-solubility trapping.

Original languageEnglish
Pages (from-to)282-324
Number of pages43
JournalAmerican Journal of Science
Volume310
Issue number4
DOIs
Publication statusPublished - 2010 Jan 1

Fingerprint

carbon sequestration
trapping
brine
oil
solubility
evaluation
shale
mineral
porosity
dissolution
permeability
fluid injection
groundwater
well logging
enhanced oil recovery
surface tension
seismic survey
history
sealing
oil production

All Science Journal Classification (ASJC) codes

  • Earth and Planetary Sciences(all)

Cite this

@article{affcadffed334dacb793b2637eadd7f1,
title = "Evaluation of trapping mechanisms in geologic CO2 sequestration: Case study of SACROC northern platform, A 35-year CO2 injection site",
abstract = "CO2 trapping mechanisms in geologic sequestration are the specific processes that hold CO2 underground in porous formations after it is injected. The main trapping mechanisms of interest include (1) fundamental confinement of mobile CO2 phase under low-permeability caprocks, or stratigraphic trapping, (2) conversion of CO2 to mineral precipitates, or mineral trapping, (3) dissolution in in situ fluid, or solubility trapping, and (4) trapping by surface tension (capillary force) and, correspondingly, remaining in porous media as an immobile CO2 phase, or residual CO2 trapping. The purpose of this work is to evaluate and quantify the competing roles of these different trapping mechanisms, including the relative amounts of storage by each. For the sake of providing a realistic appraisal, we conducted our analyses on a case study site, the SACROC Unit in the Permian basin of western Texas. CO2 has been injected in the subsurface at the SACROC Unit for more than 35 years for the purpose of enhanced oil recovery. Our analysis of the SACROC production and injection history data suggests that about 93 million metric tons of CO2 were injected and about 38 million metric tons were produced from 1972 to 2005. As a result, a simple massbalance suggests that the SACROC Unit has accumulated approximately 55 million metric tons of CO2. Our study specifically focuses on the northern platform area of the SACROC Unit where about 7 million metric tons of CO2 is stored. In the model describing the SACROC northern platform, porosity distributions were defined from extensive analyses of both 3-D seismic surveys and calibrated well logging data from 368 locations. Permeability distributions were estimated from determined porosity fields using a rock-fabric classification approach. The developed 3-D geocellular model representing the SACROC northern platform consists of over 9.4 million elements that characterize detailed 3-D heterogeneous reservoir geology. To facilitate simulation using conventional personal computers, we upscaled the 9.4 million elements model using a {"}renormalization{"} technique to reduce it to 15,470 elements. Analysis of groundwater chemistry from both the oil production formations (Cisco and Canyon Groups) and the formation above the sealing caprock suggests that the Wolfcamp Shale Formation performs well as a caprock at the SACROC Unit. However, results of geochemical mixing models also suggest that a small amount of shallow groundwater may be contaminated by reservoir brine possibly due to: (1) downward recharge of recycled reservoir brine from brine pits at the surface, or (2) upward leakage of CO2-saturated reservoir brine through the Wolfcamp Shale Formation. Using the upscaled 3-D geocellular model with detailed fluid injection/production history data and a vast amount of field data, we developed two separate models to evaluate competing CO2 trapping mechanisms at the SACROC northern platform. The first model simulated CO2 trapping mechanisms in a reservoir saturated with brine only. The second model simulated CO2 trapping mechanisms in a reservoir saturated with both brine and oil. CO2 trapping mechanisms in the brine-only model show distinctive stages accompanying injection and post-injection periods. In the 30-yearinjection period from 1972 to 2002, the amount of mobile CO2 increased to 5.0 million metric tons without increasing immobile CO2, and the mass of solubility-trapped CO 2 sharply rose to 1.7 million metric tons. After CO2 injection ceased, the amount of mobile CO2 dramatically decreased and the amount of immobile CO2 increased. Relatively small amounts of mineral precipitation (less than 0.2 million metric tons of CO2 equivalent) occurred after 200 years. In the brine-plus-oil model, dissolution of CO2 in oil (oil-solubility trapping) and mobile CO2 dominated during the entire simulation period. While supercritical-phase CO 2 is mobile near the injection wells due to the high CO2 saturation, it behaves like residually trapped CO2 because of the small density contrast between oil and CO2. In summary, the brine-only model reflected dominance by residual CO2 trapping over the long term, while CO2 in the brine-plusoil model was dominated by oil-solubility trapping.",
author = "Han, {Weon Shik} and McPherson, {Brian J.} and Lichtner, {Peter C.} and Wang, {Fred P.}",
year = "2010",
month = "1",
day = "1",
doi = "10.2475/04.2010.03",
language = "English",
volume = "310",
pages = "282--324",
journal = "American Journal of Science",
issn = "0002-9599",
publisher = "Yale University",
number = "4",

}

Evaluation of trapping mechanisms in geologic CO2 sequestration : Case study of SACROC northern platform, A 35-year CO2 injection site. / Han, Weon Shik; McPherson, Brian J.; Lichtner, Peter C.; Wang, Fred P.

In: American Journal of Science, Vol. 310, No. 4, 01.01.2010, p. 282-324.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Evaluation of trapping mechanisms in geologic CO2 sequestration

T2 - Case study of SACROC northern platform, A 35-year CO2 injection site

AU - Han, Weon Shik

AU - McPherson, Brian J.

AU - Lichtner, Peter C.

AU - Wang, Fred P.

PY - 2010/1/1

Y1 - 2010/1/1

N2 - CO2 trapping mechanisms in geologic sequestration are the specific processes that hold CO2 underground in porous formations after it is injected. The main trapping mechanisms of interest include (1) fundamental confinement of mobile CO2 phase under low-permeability caprocks, or stratigraphic trapping, (2) conversion of CO2 to mineral precipitates, or mineral trapping, (3) dissolution in in situ fluid, or solubility trapping, and (4) trapping by surface tension (capillary force) and, correspondingly, remaining in porous media as an immobile CO2 phase, or residual CO2 trapping. The purpose of this work is to evaluate and quantify the competing roles of these different trapping mechanisms, including the relative amounts of storage by each. For the sake of providing a realistic appraisal, we conducted our analyses on a case study site, the SACROC Unit in the Permian basin of western Texas. CO2 has been injected in the subsurface at the SACROC Unit for more than 35 years for the purpose of enhanced oil recovery. Our analysis of the SACROC production and injection history data suggests that about 93 million metric tons of CO2 were injected and about 38 million metric tons were produced from 1972 to 2005. As a result, a simple massbalance suggests that the SACROC Unit has accumulated approximately 55 million metric tons of CO2. Our study specifically focuses on the northern platform area of the SACROC Unit where about 7 million metric tons of CO2 is stored. In the model describing the SACROC northern platform, porosity distributions were defined from extensive analyses of both 3-D seismic surveys and calibrated well logging data from 368 locations. Permeability distributions were estimated from determined porosity fields using a rock-fabric classification approach. The developed 3-D geocellular model representing the SACROC northern platform consists of over 9.4 million elements that characterize detailed 3-D heterogeneous reservoir geology. To facilitate simulation using conventional personal computers, we upscaled the 9.4 million elements model using a "renormalization" technique to reduce it to 15,470 elements. Analysis of groundwater chemistry from both the oil production formations (Cisco and Canyon Groups) and the formation above the sealing caprock suggests that the Wolfcamp Shale Formation performs well as a caprock at the SACROC Unit. However, results of geochemical mixing models also suggest that a small amount of shallow groundwater may be contaminated by reservoir brine possibly due to: (1) downward recharge of recycled reservoir brine from brine pits at the surface, or (2) upward leakage of CO2-saturated reservoir brine through the Wolfcamp Shale Formation. Using the upscaled 3-D geocellular model with detailed fluid injection/production history data and a vast amount of field data, we developed two separate models to evaluate competing CO2 trapping mechanisms at the SACROC northern platform. The first model simulated CO2 trapping mechanisms in a reservoir saturated with brine only. The second model simulated CO2 trapping mechanisms in a reservoir saturated with both brine and oil. CO2 trapping mechanisms in the brine-only model show distinctive stages accompanying injection and post-injection periods. In the 30-yearinjection period from 1972 to 2002, the amount of mobile CO2 increased to 5.0 million metric tons without increasing immobile CO2, and the mass of solubility-trapped CO 2 sharply rose to 1.7 million metric tons. After CO2 injection ceased, the amount of mobile CO2 dramatically decreased and the amount of immobile CO2 increased. Relatively small amounts of mineral precipitation (less than 0.2 million metric tons of CO2 equivalent) occurred after 200 years. In the brine-plus-oil model, dissolution of CO2 in oil (oil-solubility trapping) and mobile CO2 dominated during the entire simulation period. While supercritical-phase CO 2 is mobile near the injection wells due to the high CO2 saturation, it behaves like residually trapped CO2 because of the small density contrast between oil and CO2. In summary, the brine-only model reflected dominance by residual CO2 trapping over the long term, while CO2 in the brine-plusoil model was dominated by oil-solubility trapping.

AB - CO2 trapping mechanisms in geologic sequestration are the specific processes that hold CO2 underground in porous formations after it is injected. The main trapping mechanisms of interest include (1) fundamental confinement of mobile CO2 phase under low-permeability caprocks, or stratigraphic trapping, (2) conversion of CO2 to mineral precipitates, or mineral trapping, (3) dissolution in in situ fluid, or solubility trapping, and (4) trapping by surface tension (capillary force) and, correspondingly, remaining in porous media as an immobile CO2 phase, or residual CO2 trapping. The purpose of this work is to evaluate and quantify the competing roles of these different trapping mechanisms, including the relative amounts of storage by each. For the sake of providing a realistic appraisal, we conducted our analyses on a case study site, the SACROC Unit in the Permian basin of western Texas. CO2 has been injected in the subsurface at the SACROC Unit for more than 35 years for the purpose of enhanced oil recovery. Our analysis of the SACROC production and injection history data suggests that about 93 million metric tons of CO2 were injected and about 38 million metric tons were produced from 1972 to 2005. As a result, a simple massbalance suggests that the SACROC Unit has accumulated approximately 55 million metric tons of CO2. Our study specifically focuses on the northern platform area of the SACROC Unit where about 7 million metric tons of CO2 is stored. In the model describing the SACROC northern platform, porosity distributions were defined from extensive analyses of both 3-D seismic surveys and calibrated well logging data from 368 locations. Permeability distributions were estimated from determined porosity fields using a rock-fabric classification approach. The developed 3-D geocellular model representing the SACROC northern platform consists of over 9.4 million elements that characterize detailed 3-D heterogeneous reservoir geology. To facilitate simulation using conventional personal computers, we upscaled the 9.4 million elements model using a "renormalization" technique to reduce it to 15,470 elements. Analysis of groundwater chemistry from both the oil production formations (Cisco and Canyon Groups) and the formation above the sealing caprock suggests that the Wolfcamp Shale Formation performs well as a caprock at the SACROC Unit. However, results of geochemical mixing models also suggest that a small amount of shallow groundwater may be contaminated by reservoir brine possibly due to: (1) downward recharge of recycled reservoir brine from brine pits at the surface, or (2) upward leakage of CO2-saturated reservoir brine through the Wolfcamp Shale Formation. Using the upscaled 3-D geocellular model with detailed fluid injection/production history data and a vast amount of field data, we developed two separate models to evaluate competing CO2 trapping mechanisms at the SACROC northern platform. The first model simulated CO2 trapping mechanisms in a reservoir saturated with brine only. The second model simulated CO2 trapping mechanisms in a reservoir saturated with both brine and oil. CO2 trapping mechanisms in the brine-only model show distinctive stages accompanying injection and post-injection periods. In the 30-yearinjection period from 1972 to 2002, the amount of mobile CO2 increased to 5.0 million metric tons without increasing immobile CO2, and the mass of solubility-trapped CO 2 sharply rose to 1.7 million metric tons. After CO2 injection ceased, the amount of mobile CO2 dramatically decreased and the amount of immobile CO2 increased. Relatively small amounts of mineral precipitation (less than 0.2 million metric tons of CO2 equivalent) occurred after 200 years. In the brine-plus-oil model, dissolution of CO2 in oil (oil-solubility trapping) and mobile CO2 dominated during the entire simulation period. While supercritical-phase CO 2 is mobile near the injection wells due to the high CO2 saturation, it behaves like residually trapped CO2 because of the small density contrast between oil and CO2. In summary, the brine-only model reflected dominance by residual CO2 trapping over the long term, while CO2 in the brine-plusoil model was dominated by oil-solubility trapping.

UR - http://www.scopus.com/inward/record.url?scp=77955914274&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77955914274&partnerID=8YFLogxK

U2 - 10.2475/04.2010.03

DO - 10.2475/04.2010.03

M3 - Article

AN - SCOPUS:77955914274

VL - 310

SP - 282

EP - 324

JO - American Journal of Science

JF - American Journal of Science

SN - 0002-9599

IS - 4

ER -