Abstract
A domain adaptive object detector aims to adapt itself to unseen domains that may contain variations of object appearance, viewpoints or backgrounds. Most existing methods adopt feature alignment either on the image level or instance level. However, image-level alignment on global features may tangle foreground/background pixels at the same time, while instance-level alignment using proposals may suffer from the background noise. Different from existing solutions, we propose a domain adaptation framework that accounts for each pixel via predicting pixel-wise objectness and centerness. Specifically, the proposed method carries out center-aware alignment by paying more attention to foreground pixels, hence achieving better adaptation across domains. We demonstrate our method on numerous adaptation settings with extensive experimental results and show favorable performance against existing state-of-the-art algorithms. Source codes and models are available at https://github.com/chengchunhsu/EveryPixelMatters.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings |
Editors | Andrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 733-748 |
Number of pages | 16 |
ISBN (Print) | 9783030585440 |
DOIs | |
Publication status | Published - 2020 |
Event | 16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom Duration: 2020 Aug 23 → 2020 Aug 28 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 12354 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 16th European Conference on Computer Vision, ECCV 2020 |
---|---|
Country/Territory | United Kingdom |
City | Glasgow |
Period | 20/8/23 → 20/8/28 |
Bibliographical note
Funding Information:Acknowledgment. This work was supported in part by the Ministry of Science and Technology (MOST) under grants MOST 107-2628-E-009-007-MY3, MOST 109-2634-F-007-013, and MOST 109-2221-E-009-113-MY3, and by Qualcomm through a Taiwan University Research Collaboration Project. M.-H. Yang is supported in part by NSF CAREER Grant 1149783.
Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
All Science Journal Classification (ASJC) codes
- Theoretical Computer Science
- Computer Science(all)