Evolution of at-rest lateral stress for cemented sands: Experimental and numerical investigation

Tae Sup Yun, T. Matthew Evans

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)


We present measurements of the evolution of the at-rest lateral stress coefficient K 0 for cemented sands in a modified oedometer and provide additional insights into material response using discrete element method (DEM) simulations. A new scheme for the measurement of K 0 is adapted to obtain horizontal stress for the entire stress history with parallel measurement of shear wave velocity. Results show that the horizontal stress of uncemented sand linearly increases, while debonding in cemented sands is characterized by a non-linear evolution of horizontal stress. Cement content governs the stress regime in which decementation initiates. The at-rest lateral stress coefficient of cemented sands increases during decementation, resulting in higher values for overconsolidated specimens. The recovery of K 0 values is manifested at the preconsolidation stress during reloading. Cemented sands collapse followed by decementation and subsequent changes in K 0 values. The DEM simulations reasonably reproduce laboratory specimen-scale response and are used to highlight the evolution of particle contact force, gradual debonding of cement, and the formation of a blocky structure in cemented sands at the particle-scale. These observations are consistent with inferred response of physical specimens at the particle scale, yet this behavior is not directly observable in the laboratory, highlighting the particular effectiveness of an integrated physical-numerical investigation. The interparticle contact stiffness of cemented sands controls the evolution of horizontal stress at low vertical stress, and the decementation causes the convergence of K 0 values towards those of uncemented sands at high vertical stress.

Original languageEnglish
Pages (from-to)671-683
Number of pages13
JournalGranular Matter
Issue number5
Publication statusPublished - 2011 Oct

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanics of Materials
  • Physics and Astronomy(all)


Dive into the research topics of 'Evolution of at-rest lateral stress for cemented sands: Experimental and numerical investigation'. Together they form a unique fingerprint.

Cite this