Exovascular application of epigallocatechin-3-O-gallate-releasing electrospun poly(l-lactide glycolic acid) fiber sheets to reduce intimal hyperplasia in injured abdominal aorta

Mi Hee Lee, Byeong Ju Kwon, Min Ah Koo, Eui Hwa Jang, Gyeung Mi Seon, Jong Chul Park

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Intimal hyperplasia is an excessive ingrowth of tissue resulting in chronic structural lesions commonly found at sites of atherosclerotic lesions, arterial angioplasty, vascular graft anastomoses, and other vascular abnormalities. Epigallocatechin-3-O-gallate (EGCG) was shown to elicit antioxidant, anti-proliferative, and anti-thrombogenic effects. In this study, we used an electrospinning technique to synthesize EGCG-eluting biodegradable poly(l-lactide glycolic acid) (PLGA) fiber sheets for local delivery of EGCG and investigated the effect of their exovascular application on intimal hyperplasia following balloon-induced abdominal aorta injury in a rabbit experimental model. The morphology of the composite sheets was characterized using scanning electron microscopy and Fourier transform-infrared spectroscopy. EGCG was loaded and dispersed into the PLGA-based electrospun fibers. The EGCG-loaded PLGA sheets exhibited sustained EGCG release following the initial 24 h of burst release in phosphate-buffered saline. In vivo studies demonstrated significant inhibition of intimal hyperplasia following the application of the EGCG-eluting electrospun PLGA fiber sheets, compared with vehicle PLGA controls. In conclusion, our results show that exovascular application of EGCG-eluting PLGA electrospun fiber sheets may provide a useful system for the effective local delivery of drugs for the prevention of intimal hyperplasia.

Original languageEnglish
Article number055010
JournalBiomedical Materials (Bristol)
Volume10
Issue number5
DOIs
Publication statusPublished - 2015 Sep 21

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Biomaterials
  • Biomedical Engineering

Fingerprint Dive into the research topics of 'Exovascular application of epigallocatechin-3-O-gallate-releasing electrospun poly(l-lactide glycolic acid) fiber sheets to reduce intimal hyperplasia in injured abdominal aorta'. Together they form a unique fingerprint.

Cite this