Exploring the Origin of Thick Disks Using the NewHorizon and Galactica Simulations

Minjung J. Park, Sukyoung K. Yi, Sebastien Peirani, Christophe Pichon, Yohan Dubois, Hoseung Choi, Julien Devriendt, Sugata Kaviraj, Taysun Kimm, Katarina Kraljic, Marta Volonteri

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Ever since a thick disk was proposed to explain the vertical distribution of the Milky Way disk stars, its origin has been a recurrent question. We aim to answer this question by inspecting 19 disk galaxies with stellar mass greater than 1010 M o˙ in recent cosmological high-resolution zoom-in simulations: galactica and NewHorizon. The thin and thick disks are reasonably reproduced by the simulations with scale heights and luminosity ratios as observed. We then spatially classify the thin and thick disks and find that the thick disk stars are older, metal-poorer, kinematically hotter, and higher in accreted star fraction, while both disks are dominated by the stars formed in situ. Half of the in situ stars in the thick disks are formed before the galaxies develop their disks, and the rest are formed in spatially and kinematically thinner disks and then thickened with time by heating. However, the 19 galaxies have various properties and evolutionary routes, highlighting the need for statistically large samples to draw general conclusions. We conclude from our simulations that the thin and thick disk components are not entirely distinct in terms of formation processes but rather markers of the evolution of galactic disks. Moreover, as the combined result of the thickening of the existing disk stars and the continued formation of young thin disk stars, the vertical distribution of stars does not change much after the disks settle, pointing to the modulation of both orbital diffusion and star formation by the same confounding factor: the proximity of galaxies to marginal stability.

Original languageEnglish
Article number2
JournalAstrophysical Journal, Supplement Series
Volume254
Issue number1
DOIs
Publication statusPublished - 2021 Apr

Bibliographical note

Publisher Copyright:
© 2021. The American Astronomical Society. All rights reserved.

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Exploring the Origin of Thick Disks Using the NewHorizon and Galactica Simulations'. Together they form a unique fingerprint.

Cite this