Expression of autotaxin-lysophosphatidate signaling-related proteins in breast cancer with adipose stroma

Yoon Jin Cha, Ja Seung Koo

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

This research aimed to evaluate the expression and clinical implication of autotaxin (ATX)-lysophosphatidate (LPA) signaling-related proteins in breast cancer with adipose stroma. To this end, a tissue microarray (TMA) was constructed from 137 breast cancer tissues with adipose stroma and 329 breast cancer tissues with non-adipose stroma (inflammatory stroma: n = 81, 24.6%; fibrous stroma: n = 246, 75.4%). Immunohistochemical staining for ATX-LPA signaling-related proteins (ATX, LPA1, LPA2, and LPA3) was performed on the TMA. The results showed that LPA2 in tumor cells and LPA3 in stromal cells were highly expressed in breast cancer with adipose stroma and breast cancer with adipose and inflammatory stroma, respectively. Stromal LPA1 positivity (p = 0.017) and stromal LPA3 positivity (p = 0.004) were higher in breast cancer with adipose stroma containing CD68-positive crown-like structures (CLS). Stromal ATX positivity (p = 0.010) and stromal LPA3 positivity (p = 0.009) were higher in breast cancer with adipose tissue containing CD163-positive CLS. In breast cancer with adipose stroma, the number of CD163-positive macrophages was greater with stromal ATX positivity (p = 0.003), and the number of CD68-positive and CD163-positive macrophages were greater in cases with stromal LPA3 positivity. In conclusion, ATX-LPA signaling-related proteins are highly expressed in breast cancer with adipose stroma, with associated macrophage infiltration.

Original languageEnglish
Article number2102
JournalInternational journal of molecular sciences
Volume20
Issue number9
DOIs
Publication statusPublished - 2019 May 1

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Expression of autotaxin-lysophosphatidate signaling-related proteins in breast cancer with adipose stroma'. Together they form a unique fingerprint.

  • Cite this