Abstract
A standard iterative thinning algorithm which has been widely used to extract features for character recognition may destroy information due to several defects such as spurious loops in the skeleton and deformation in touched strokes. This is because most thinning algorithms rely on the steady erosion of character boundaries while maintaining the connectivity of the shape. To solve this problem, this paper proposes a knowledge-based thinning method which removes the spurious loops by a preprocessing stage and makes use of average stroke widths and domain knowledge on Hangul (Korean script) to extract intuitive strokes. The experimental results on 2000 handwritten Hangul characters in PE92 benchmark database indicate that the proposed method has reduced the number of defects and led to more intuitive strokes.
Original language | English |
---|---|
Pages (from-to) | 65-73 |
Number of pages | 9 |
Journal | Engineering Applications of Artificial Intelligence |
Volume | 16 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2003 Feb |
Bibliographical note
Funding Information:This work was supported in part by Biometrics Engineering Research Center, KOSEF, in Korea.
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Artificial Intelligence
- Electrical and Electronic Engineering