Facile loading of Cu(I) in MIL-100(Fe) through redox-active Fe(II) sites and remarkable propylene/propane separation performance

Ah Reum Kim, Tae Ung Yoon, Eun Jung Kim, Jung Woon Yoon, Seo Yul Kim, Ji Woong Yoon, Young Kyu Hwang, Jong San Chang, Youn-Sang Bae

Research output: Contribution to journalArticle

29 Citations (Scopus)


A novel Cu(I) loading method, which includes the reduction of CuCl 2 to CuCl without an external reducing agent and high-temperature calcination, was developed using the redox properties of coordinatively unsaturated Fe(II) sites in MIL-100(Fe). The successful loading of Cu(I) ions and their redox-couple reactions are supported by various methods such as TEM/EDS, XPS, PXRD, and ICP-AES techniques, as well as N 2 adsorption isotherms at 77 K. Compared to Cu loaded into isostructural MIL-100(Al) devoid of redox active sites, Cu(I)-loaded MIL-100(Fe) exhibits higher C 3 H 6 /C 3 H 8 selectivity and superior air stability. This indicates that the Fe(II) sites in MIL-100(Fe) act as antioxidants that protect the resultant Cu(I) species, as well as reducing agents for CuCl 2 . Remarkably, in the typical pressure-swing adsorption (PSA) range (1–5 bar), the Cu(I)-loaded MIL-100(Fe) exhibits a large C 3 H 6 working capacity as well as very high C 3 H 6 /C 3 H 8 selectivities that are superior to those of the benchmark adsorbents, zeolite-13X and HKUST-1. Moreover, this material is easily regenerated under mild conditions and exhibits good separation performance under dynamic mixed-flow conditions. This facile method for loading Cu(I) can be applied to other adsorbents containing redox-active sites.

Original languageEnglish
Pages (from-to)777-784
Number of pages8
JournalChemical Engineering Journal
Publication statusPublished - 2018 Jan 1


All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Environmental Chemistry
  • Chemical Engineering(all)
  • Industrial and Manufacturing Engineering

Cite this