Facile synthesis of cauliflower-like cobalt-doped Ni3Se2 nanostructures as high-performance cathode materials for aqueous zinc-ion batteries

D. Amaranatha Reddy, Hwan Lee, Madhusudana Gopannagari, D. Praveen Kumar, Kiyoung Kwon, Hyun Deog Yoo, Tae Kyu Kim

Research output: Contribution to journalArticle


Ni3Se2 and Co-doped Ni3Se2 cauliflower-like nanostructures are synthesized using a simple and feasible electrochemical deposition technique. Electrochemical measurements of the resultant nanostructures in 1 M KOH electrolyte solution revealed that the energy storage performance of the cauliflower-like Ni3Se2 nanostructures was considerably improved by cobalt doping. Particularly, 6 wt% Co-doped Ni3Se2 electrodes exhibited remarkable high specific capacity (179.34 mAh g−1) and excellent stability with capacity retention of 85.9% over 1000 cycles because of their high electrical conductivity. Furthermore, to verify the feasibility of the optimized Co-doped Ni3Se2 electrodes for practical applications, Zn ion batteries were constructed by using a Zn plate as the anode and the Co-doped Ni3Se2 nanostructures as the cathode. The constructed Zn ion battery achieved high energy and power densities of 199.34 W h kg−1 and 24,510 W kg−1 at the current densities of 1 and 20 A g−1, respectively. In addition, up to 2.2 electrons per formula unit of Ni3Se2 were successfully utilized, indicating considerably higher utilization of Ni2+/Ni3+ redox sites by Co doping the selenite. This work demonstrated an effectual strategy for rational design of highly robust, low-cost flexible electrodes for energy storage devices.

Original languageEnglish
Pages (from-to)7741-7750
Number of pages10
JournalInternational Journal of Hydrogen Energy
Issue number13
Publication statusPublished - 2020 Mar 6

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

Fingerprint Dive into the research topics of 'Facile synthesis of cauliflower-like cobalt-doped Ni<sub>3</sub>Se<sub>2</sub> nanostructures as high-performance cathode materials for aqueous zinc-ion batteries'. Together they form a unique fingerprint.

  • Cite this