Abstract
Performing simple household tasks based on language directives is very natural to humans, yet it remains an open challenge for AI agents. The 'interactive instruction following' task attempts to make progress towards building agents that jointly navigate, interact, and reason in the environment at every step. To address the multifaceted problem, we propose a model that factorizes the task into interactive perception and action policy streams with enhanced components and name it as MOCA, a Modular Object-Centric Approach. We empirically validate that MOCA outperforms prior arts by significant margins on the ALFRED benchmark with improved generalization.
Original language | English |
---|---|
Title of host publication | Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1868-1877 |
Number of pages | 10 |
ISBN (Electronic) | 9781665428125 |
DOIs | |
Publication status | Published - 2021 |
Event | 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada Duration: 2021 Oct 11 → 2021 Oct 17 |
Publication series
Name | Proceedings of the IEEE International Conference on Computer Vision |
---|---|
ISSN (Print) | 1550-5499 |
Conference
Conference | 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 |
---|---|
Country/Territory | Canada |
City | Virtual, Online |
Period | 21/10/11 → 21/10/17 |
Bibliographical note
Funding Information:Acknowledgement. This work was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2019R1C1C1009283) and Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2019-0-01842, Artificial Intelligence Graduate School Program (GIST)), (No.2019-0-01351, Development of Ultra Low-Power Mobile Deep Learning Semiconductor With Compression/Decompression of Activation/Kernel Data, 25%) and (No. 2021-0-02068, Artificial Intelligence Innovation Hub).
Publisher Copyright:
© 2021 IEEE
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition