Abstract
This study aims to investigate the feasibility of eliminating the minimum shear reinforcement in reinforced sustainable high-strength concrete (HSC) beams by incorporating 0.75% (by volume) of hooked steel fibers. To do this, five large reinforced HSC beams, with and without stirrups and steel fibers, were fabricated and tested. In order to have minimum shear reinforcement, the reinforced HSC beams were designed with longitudinal steel bar ratios of 0.64–0.72%. Test results indicate that the use of 0.75 vol% of steel fibers (instead of stirrups) leads to higher flexural strength but lower ultimate deflection and ductility. The failure mode of lightly-reinforced HSC beams was transformed from concrete crushing to longitudinal steel bar rupture by including the steel fibers. However, both the reinforced HSC and steel-fiber-reinforced concrete (SFRC) beams exhibited flexural failure modes; as a result, it was concluded that the minimum shear reinforcement for reinforced HSC beams can be efficiently eliminated by including 0.75 vol% of hooked steel fibers. In addition, the flexural behavior of reinforced SFRC beams was successfully simulated based on sectional analysis by considering fiber orientation factor.
Original language | English |
---|---|
Pages (from-to) | 207-222 |
Number of pages | 16 |
Journal | Engineering Structures |
Volume | 147 |
DOIs | |
Publication status | Published - 2017 Sept 15 |
Bibliographical note
Funding Information:This research was supported by a grant (13SCIPA01) from Smart Civil Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and Korea Agency for Infrastructure Technology Advancement (KAIA).
Publisher Copyright:
© 2017 Elsevier Ltd
All Science Journal Classification (ASJC) codes
- Civil and Structural Engineering