Abstract
A large amount of information needs to be identified and produced during the process of promoting projects of interest. Thermal infrared (TIR) images are extensively used because they can provide information that cannot be extracted from visible images. In particular, TIR oblique images facilitate the acquisition of information of a building’s facade that is challenging to obtain from a nadir image. When a TIR oblique image and the 3D information acquired from conventional visible nadir imagery are combined, a great synergy for identifying surface information can be created. However, it is an onerous task to match common points in the images. In this study, a robust matching method of image pairs combined with different wavelengths and geometries (i.e., visible nadir-looking vs. TIR oblique, and visible oblique vs. TIR nadir-looking) is proposed. Three main processes of phase congruency, histogram matching, and Image Matching by Affine Simulation (IMAS) were adjusted to accommodate the radiometric and geometric differences of matched image pairs. The method was applied to Unmanned Aerial Vehicle (UAV) images of building and non-building areas. The results were compared with frequently used matching techniques, such as scale-invariant feature transform (SIFT), speeded-up robust features (SURF), synthetic aperture radar–SIFT (SAR–SIFT), and Affine SIFT (ASIFT). The method outperforms other matching methods in root mean square error (RMSE) and matching performance (matched and not matched). The proposed method is believed to be a reliable solution for pinpointing surface information through image matching with different geometries obtained via TIR and visible sensors.
Original language | English |
---|---|
Article number | 4587 |
Journal | Sensors |
Volume | 21 |
Issue number | 13 |
DOIs | |
Publication status | Published - 2021 Jul 1 |
Bibliographical note
Funding Information:Funding: This research was supported by a grant (20009742) of Ministry-Cooperation’s R&D program of Disaster-Safety, funded by Ministry of Interior and Safety (MOIS, Korea) and, This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2019R1A6A3A13096717).
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
All Science Journal Classification (ASJC) codes
- Analytical Chemistry
- Information Systems
- Atomic and Molecular Physics, and Optics
- Biochemistry
- Instrumentation
- Electrical and Electronic Engineering