TY - JOUR
T1 - Flow Dynamics of CO2/brine at the Interface Between the Storage Formation and Sealing Units in a Multi-layered Model
AU - Kim, Kue Young
AU - Han, Weon Shik
AU - Oh, Junho
AU - Park, Eungyu
AU - Lee, Pyeong Koo
PY - 2014/12/1
Y1 - 2014/12/1
N2 - Pressure distribution and $$\hbox {CO}_{2}$$CO2 plume migration are two major interests in $$\hbox {CO}_{2}$$CO2 geologic storage as they determine the injectivity and storage capacity. In this study, we adopted a three-layer model comprising a storage formation and the over- and underlying seals and determined three distinct flow regions based on the vertical flux exchange of $$\hbox {CO}_{2}$$CO2 and native brine. Regions 1 and 2 showed $$\hbox {CO}_{2}$$CO2 flowing from the storage formation to adjacent seals with counter-flowing brine. The characteristics of these fluxes in Region 1 were governed by permeability change due to salt precipitation whereas buoyancy force controlled the flux pattern in Region 2. Region 3 showed brine flowing from storage formation toward the over- and underlying seals, which enabled the displaced brine to escape from the storage formation and make room for $$\hbox {CO}_{2}$$CO2 to store as well as reduce the pressure build-up. In the multi-layered model, the counter-flowing brine in flow Region 1 resulted in localized salt precipitation at the upper and lower boundary of storage formation. We assessed the bottom-hole pressure and $$\hbox {CO}_{2}$$CO2 mass in caprock with respect to reservoir size. While the formation thickness influenced the bottom-hole pressure in the early stage of injection, the horizontal extension of the reservoir was more influential to pressure build-up during the injection period, and to the stabilized pressure during the post-injection period. The $$\hbox {CO}_{2}$$CO2 mass in caprock gently increased during the injection period as well as during the post-injection period and reached about 4–5 % of injected $$\hbox {CO}_{2}$$CO2. The percentage of escaped brine from the storage formation ranged from 80–100 % of the $$\hbox {CO}_{2}$$CO2 mass stored in the storage formation depending on the reservoir scale.
AB - Pressure distribution and $$\hbox {CO}_{2}$$CO2 plume migration are two major interests in $$\hbox {CO}_{2}$$CO2 geologic storage as they determine the injectivity and storage capacity. In this study, we adopted a three-layer model comprising a storage formation and the over- and underlying seals and determined three distinct flow regions based on the vertical flux exchange of $$\hbox {CO}_{2}$$CO2 and native brine. Regions 1 and 2 showed $$\hbox {CO}_{2}$$CO2 flowing from the storage formation to adjacent seals with counter-flowing brine. The characteristics of these fluxes in Region 1 were governed by permeability change due to salt precipitation whereas buoyancy force controlled the flux pattern in Region 2. Region 3 showed brine flowing from storage formation toward the over- and underlying seals, which enabled the displaced brine to escape from the storage formation and make room for $$\hbox {CO}_{2}$$CO2 to store as well as reduce the pressure build-up. In the multi-layered model, the counter-flowing brine in flow Region 1 resulted in localized salt precipitation at the upper and lower boundary of storage formation. We assessed the bottom-hole pressure and $$\hbox {CO}_{2}$$CO2 mass in caprock with respect to reservoir size. While the formation thickness influenced the bottom-hole pressure in the early stage of injection, the horizontal extension of the reservoir was more influential to pressure build-up during the injection period, and to the stabilized pressure during the post-injection period. The $$\hbox {CO}_{2}$$CO2 mass in caprock gently increased during the injection period as well as during the post-injection period and reached about 4–5 % of injected $$\hbox {CO}_{2}$$CO2. The percentage of escaped brine from the storage formation ranged from 80–100 % of the $$\hbox {CO}_{2}$$CO2 mass stored in the storage formation depending on the reservoir scale.
UR - http://www.scopus.com/inward/record.url?scp=84926629634&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84926629634&partnerID=8YFLogxK
U2 - 10.1007/s11242-014-0387-3
DO - 10.1007/s11242-014-0387-3
M3 - Article
SN - 0169-3913
VL - 105
SP - 611
EP - 633
JO - Transport in Porous Media
JF - Transport in Porous Media
IS - 3
ER -