Abstract
Challenges in the understanding of three-dimensional (3D) brain networks by simultaneously recording both surface and intracortical areas of brain signals remain due to the difficulties of constructing mechanical design and spatial limitations of the implanted sites. Here, we present a foldable and flexible 3D neural prosthetic that facilitates the 3D mapping of complex neural circuits with high spatiotemporal dynamics from the intracortical to cortical region. This device is the tool to map the 3D neural transmission through sophisticatedly designed four flexible penetrating shanks and surface electrode arrays in one integrated system. We demonstrate the potential possibilities of identifying correlations of neural activities from the intracortical area to cortical regions through continuous monitoring of electrophysiological signals. We also exploited the structural properties of the device to record synchronized signals of single spikes evoked by unidirectional total whisker stimulation. This platform offers opportunities to clarify unpredictable 3D neural pathways and provides a next-generation neural interface.
Original language | English |
---|---|
Article number | 86 |
Journal | npj Flexible Electronics |
Volume | 6 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2022 Dec |
Bibliographical note
Funding Information:This work acknowledges the support received from the National Research Foundation of Korea (Grant Nos. NRF-2019R1A2C2086085, NRF-2021R1A4A1031437, and NRF-2018M3A7B4071109). H.C. also acknowledges the support provided by the National Institutes of Health (Award Nos. R21EB030140, U01DA056242, and R61HL154215).
Publisher Copyright:
© 2022, The Author(s).
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Electrical and Electronic Engineering