Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models

Ha Young Kim, Chang Hyun Won

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

Volatility plays crucial roles in financial markets, such as in derivative pricing, portfolio risk management, and hedging strategies. Therefore, accurate prediction of volatility is critical. We propose a new hybrid long short-term memory (LSTM) model to forecast stock price volatility that combines the LSTM model with various generalized autoregressive conditional heteroscedasticity (GARCH)-type models. We use KOSPI 200 index data to discover proposed hybrid models that combine an LSTM with one to three GARCH-type models. In addition, we compare their performance with existing methodologies by analyzing single models, such as the GARCH, exponential GARCH, exponentially weighted moving average, a deep feedforward neural network (DFN), and the LSTM, as well as the hybrid DFN models combining a DFN with one GARCH-type model. Their performance is compared with that of the proposed hybrid LSTM models. We discover that GEW-LSTM, a proposed hybrid model combining the LSTM model with three GARCH-type models, has the lowest prediction errors in terms of mean absolute error (MAE), mean squared error (MSE), heteroscedasticity adjusted MAE (HMAE), and heteroscedasticity adjusted MSE (HMSE). The MAE of GEW-LSTM is 0.0107, which is 37.2% less than that of the E-DFN (0.017), the model combining EGARCH and DFN and the best model among those existing. In addition, the GEW-LSTM has 57.3%, 24.7%, and 48% smaller MSE, HMAE, and HMSE, respectively. The first contribution of this study is its hybrid LSTM model that combines excellent sequential pattern learning with improved prediction performance in stock market volatility. Second, our proposed model markedly enhances prediction performance of the existing literature by combining a neural network model with multiple econometric models rather than only a single econometric model. Finally, the proposed methodology can be extended to various fields as an integrated model combining time-series and neural network models as well as forecasting stock market volatility.

Original languageEnglish
Pages (from-to)25-37
Number of pages13
JournalExpert Systems with Applications
Volume103
DOIs
Publication statusPublished - 2018 Aug 1

Fingerprint

Feedforward neural networks
Long short-term memory
Neural networks
Risk management
Time series
Derivatives
Financial markets
Costs

All Science Journal Classification (ASJC) codes

  • Engineering(all)
  • Computer Science Applications
  • Artificial Intelligence

Cite this

@article{99eb224bba69475a8e360d1521f4ec37,
title = "Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models",
abstract = "Volatility plays crucial roles in financial markets, such as in derivative pricing, portfolio risk management, and hedging strategies. Therefore, accurate prediction of volatility is critical. We propose a new hybrid long short-term memory (LSTM) model to forecast stock price volatility that combines the LSTM model with various generalized autoregressive conditional heteroscedasticity (GARCH)-type models. We use KOSPI 200 index data to discover proposed hybrid models that combine an LSTM with one to three GARCH-type models. In addition, we compare their performance with existing methodologies by analyzing single models, such as the GARCH, exponential GARCH, exponentially weighted moving average, a deep feedforward neural network (DFN), and the LSTM, as well as the hybrid DFN models combining a DFN with one GARCH-type model. Their performance is compared with that of the proposed hybrid LSTM models. We discover that GEW-LSTM, a proposed hybrid model combining the LSTM model with three GARCH-type models, has the lowest prediction errors in terms of mean absolute error (MAE), mean squared error (MSE), heteroscedasticity adjusted MAE (HMAE), and heteroscedasticity adjusted MSE (HMSE). The MAE of GEW-LSTM is 0.0107, which is 37.2{\%} less than that of the E-DFN (0.017), the model combining EGARCH and DFN and the best model among those existing. In addition, the GEW-LSTM has 57.3{\%}, 24.7{\%}, and 48{\%} smaller MSE, HMAE, and HMSE, respectively. The first contribution of this study is its hybrid LSTM model that combines excellent sequential pattern learning with improved prediction performance in stock market volatility. Second, our proposed model markedly enhances prediction performance of the existing literature by combining a neural network model with multiple econometric models rather than only a single econometric model. Finally, the proposed methodology can be extended to various fields as an integrated model combining time-series and neural network models as well as forecasting stock market volatility.",
author = "Kim, {Ha Young} and Won, {Chang Hyun}",
year = "2018",
month = "8",
day = "1",
doi = "10.1016/j.eswa.2018.03.002",
language = "English",
volume = "103",
pages = "25--37",
journal = "Expert Systems with Applications",
issn = "0957-4174",
publisher = "Elsevier Limited",

}

Forecasting the volatility of stock price index : A hybrid model integrating LSTM with multiple GARCH-type models. / Kim, Ha Young; Won, Chang Hyun.

In: Expert Systems with Applications, Vol. 103, 01.08.2018, p. 25-37.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Forecasting the volatility of stock price index

T2 - A hybrid model integrating LSTM with multiple GARCH-type models

AU - Kim, Ha Young

AU - Won, Chang Hyun

PY - 2018/8/1

Y1 - 2018/8/1

N2 - Volatility plays crucial roles in financial markets, such as in derivative pricing, portfolio risk management, and hedging strategies. Therefore, accurate prediction of volatility is critical. We propose a new hybrid long short-term memory (LSTM) model to forecast stock price volatility that combines the LSTM model with various generalized autoregressive conditional heteroscedasticity (GARCH)-type models. We use KOSPI 200 index data to discover proposed hybrid models that combine an LSTM with one to three GARCH-type models. In addition, we compare their performance with existing methodologies by analyzing single models, such as the GARCH, exponential GARCH, exponentially weighted moving average, a deep feedforward neural network (DFN), and the LSTM, as well as the hybrid DFN models combining a DFN with one GARCH-type model. Their performance is compared with that of the proposed hybrid LSTM models. We discover that GEW-LSTM, a proposed hybrid model combining the LSTM model with three GARCH-type models, has the lowest prediction errors in terms of mean absolute error (MAE), mean squared error (MSE), heteroscedasticity adjusted MAE (HMAE), and heteroscedasticity adjusted MSE (HMSE). The MAE of GEW-LSTM is 0.0107, which is 37.2% less than that of the E-DFN (0.017), the model combining EGARCH and DFN and the best model among those existing. In addition, the GEW-LSTM has 57.3%, 24.7%, and 48% smaller MSE, HMAE, and HMSE, respectively. The first contribution of this study is its hybrid LSTM model that combines excellent sequential pattern learning with improved prediction performance in stock market volatility. Second, our proposed model markedly enhances prediction performance of the existing literature by combining a neural network model with multiple econometric models rather than only a single econometric model. Finally, the proposed methodology can be extended to various fields as an integrated model combining time-series and neural network models as well as forecasting stock market volatility.

AB - Volatility plays crucial roles in financial markets, such as in derivative pricing, portfolio risk management, and hedging strategies. Therefore, accurate prediction of volatility is critical. We propose a new hybrid long short-term memory (LSTM) model to forecast stock price volatility that combines the LSTM model with various generalized autoregressive conditional heteroscedasticity (GARCH)-type models. We use KOSPI 200 index data to discover proposed hybrid models that combine an LSTM with one to three GARCH-type models. In addition, we compare their performance with existing methodologies by analyzing single models, such as the GARCH, exponential GARCH, exponentially weighted moving average, a deep feedforward neural network (DFN), and the LSTM, as well as the hybrid DFN models combining a DFN with one GARCH-type model. Their performance is compared with that of the proposed hybrid LSTM models. We discover that GEW-LSTM, a proposed hybrid model combining the LSTM model with three GARCH-type models, has the lowest prediction errors in terms of mean absolute error (MAE), mean squared error (MSE), heteroscedasticity adjusted MAE (HMAE), and heteroscedasticity adjusted MSE (HMSE). The MAE of GEW-LSTM is 0.0107, which is 37.2% less than that of the E-DFN (0.017), the model combining EGARCH and DFN and the best model among those existing. In addition, the GEW-LSTM has 57.3%, 24.7%, and 48% smaller MSE, HMAE, and HMSE, respectively. The first contribution of this study is its hybrid LSTM model that combines excellent sequential pattern learning with improved prediction performance in stock market volatility. Second, our proposed model markedly enhances prediction performance of the existing literature by combining a neural network model with multiple econometric models rather than only a single econometric model. Finally, the proposed methodology can be extended to various fields as an integrated model combining time-series and neural network models as well as forecasting stock market volatility.

UR - http://www.scopus.com/inward/record.url?scp=85043451580&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85043451580&partnerID=8YFLogxK

U2 - 10.1016/j.eswa.2018.03.002

DO - 10.1016/j.eswa.2018.03.002

M3 - Article

AN - SCOPUS:85043451580

VL - 103

SP - 25

EP - 37

JO - Expert Systems with Applications

JF - Expert Systems with Applications

SN - 0957-4174

ER -