FORMATION of GLOBULAR CLUSTERS in ATOMIC-COOLING HALOS VIA RAPID GAS CONDENSATION and FRAGMENTATION during the EPOCH of REIONIZATION

Taysun Kimm, Renyue Cen, Joakim Rosdahl, Sukyoung K. Yi

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

We investigate the formation of metal-poor globular clusters (GCs) at the center of two dark matter halos with Mhalo ∼ 4 × 107 Møat z > 10 using cosmological radiation-hydrodynamics simulations. We find that very compact (≲1 pc) and massive (∼6 ∼ 105 Mø) clusters form rapidly when pristine gas collapses isothermally with the aid of efficient Ly emission during the transition from molecular-cooling halos to atomic-cooling halos. Because the local free-fall time of dense star-forming gas is very short (<1 Myr), a large fraction of the collapsed gas is turned into stars before stellar feedback processes blow out the gas and shut down star formation. Although the early stage of star formation is limited to a small region of the central star-forming disk, we find that the disk quickly fragments due to metal enrichment from supernovae. Sub-clusters formed in the fragmented clouds eventually merge with the main cluster at the center. The simulated clusters closely resemble the local GCs in mass and size but show a metallicity spread that is much wider than found in the local GCs. We discuss a role of preenrichment by Pop III and II stars as a potential solution to the latter issue. Although not without shortcomings, it is encouraging that a naive blind (not tuned) cosmological simulation presents a possible channel for the formation of at least some massive GCs.

Original languageEnglish
Article number52
JournalAstrophysical Journal
Volume823
Issue number1
DOIs
Publication statusPublished - 2016 May 20

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this