Abstract
SOI-like single-crystal silicon films on insulator islands are grown from SOI and bulk Si wafer substrates by a process combining vapor-phase epitaxy and laser crystallization. Ultra-high vacuum (UHV) CVD selective epitaxy is used to grow single-crystal Si, seeded from and normal to the substrate, between patterned insulator islands (SiO2 or Si3N 4/SiO2) up to the thickness of the insulator islands. Amorphous Si (a-Si) is sputter-deposited over both the epitaxially grown Si regions and the insulator islands, and the a-Si is completely melted by a single excimer laser pulse, leading to solidification of the molten Si seeded from the single-crystal Si regions. Analyses of the resulting microstructures reveal that lateral crystallization extends into the center of the insulator island, and that the laterally crystallized film is single-crystalline. The maximum measured lateral growth distance was greater than 2.5 microns. This paper details the microstructural analyses of the crystallized Si film, and discusses the mechanism of laser-induced lateral crystallization and the significance of heat flow and the Si3N4/SiO2 layers in attaining large lateral growth lengths.
Original language | English |
---|---|
Pages | 243-248 |
Number of pages | 6 |
Publication status | Published - 2005 |
Event | 207th ECS Meeting - Quebec, Canada Duration: 2005 May 16 → 2005 May 20 |
Other
Other | 207th ECS Meeting |
---|---|
Country/Territory | Canada |
City | Quebec |
Period | 05/5/16 → 05/5/20 |
All Science Journal Classification (ASJC) codes
- Engineering(all)