Foveated video compression with optimal rate control

Sanghoon Lee, Marios S. Pattichis, Alan Conrad Bovik

Research output: Contribution to journalArticle

112 Citations (Scopus)

Abstract

Recently, foveated video compression algorithms have been proposed which, in certain applications, deliver high-quality video at reduced bit rates by seeking to match the nonuniform sampling of the human retina. We describe such a framework here where foveated video is created by a nonuniform filtering scheme that increases the compressibility of the video stream. We maximize a new foveal visual quality metric, the foveal signal-to-noise ratio (FSNR) to determine the best compression and rate control parameters for a given target bit rate. Specifically, we establish a new optimal rate control algorithm for maximizing the FSNR using a Lagrange multiplier method defined on a curvilinear coordinate system. For optimal rate control, we also develop a piecewise R-D (rate-distortion)/R-Q (rate-quantization) model. A fast algorithm for searching for an optimal Lagrange multiplier λ* is subsequently presented. For the new models, we show how the reconstructed video quality is affected, where the FPSNR is maximized, and demonstrate the coding performance for H.263,+,++/MPEG-4 video coding. For H.263/MPEG video coding, a suboptimal rate control algorithm is developed for fast, high-performance applications. In the simulations, we compare the reconstructed pictures obtained using optimal rate control methods for foveated and normal video. We show that foveated video coding using the suboptimal rate control algorithm delivers excellent performance under 64 kb/s.

Original languageEnglish
Pages (from-to)977-992
Number of pages16
JournalIEEE Transactions on Image Processing
Volume10
Issue number7
DOIs
Publication statusPublished - 2001 Jul 1

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Graphics and Computer-Aided Design

Cite this