Abstract
The recent advances in the micro/nanomotor field have shown great progress in the propulsion of such devices by fuel-free mechanisms. Light, as an abundant and natural source, has been demonstrated to be a promising external field to wirelessly induce the motion of these tiny micro/nanomachines, without the need of any toxic fuel or complex system set-up. This tutorial review covers the most representative examples of light-driven micro/nanomotors developed so far, which self-propelled exclusively under fuel-free conditions. Their different swimming behaviors triggered by light stimuli, divided into four main categories (schooling, phototaxis, gravitaxis and directional motion), are discussed along with their similarities with the motion modes of microorganisms. Moreover, the main parameters that influence the motion of light-driven photocatalytic-based micro/nanomotors as well as alternative strategies to develop more efficient systems are also discussed.
Original language | English |
---|---|
Pages (from-to) | 4966-4978 |
Number of pages | 13 |
Journal | Chemical Society reviews |
Volume | 48 |
Issue number | 19 |
DOIs | |
Publication status | Published - 2019 Oct 7 |
Bibliographical note
Funding Information:This work was supported by the project Advanced Functional Nanorobots (reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR).
Publisher Copyright:
© 2019 The Royal Society of Chemistry.
All Science Journal Classification (ASJC) codes
- Chemistry(all)