Genetic deficiency in neuronal peroxisomal fatty acid β-oxidation causes the interruption of dauer development in Caenorhabditis elegans

Saeram Park, Young Ki Paik

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Although peroxisomal fatty acid (FA) β-oxidation is known to be critical for animal development, the cellular mechanisms that control the manner in which its neuronal deficiency causes developmental defects remain unclear. To elucidate the potential cellular consequences of neuronal FA metabolic disorder for dauer development, an alternative developmental process in Caenorhabditis elegans that occurs during stress, we investigated the sequential effects of its corresponding genetic deficiency. Here, we show that the daf-22 gene in peroxisomal FA β-oxidation plays a distinct role in ASK neurons, and its deficiency interrupts dauer development even in the presence of the exogenous ascaroside pheromones that induce such development. Un-metabolized FAs accumulated in ASK neurons of daf-22 mutants stimulate the endoplasmic reticulum (ER) stress response, which may enhance the XBP-1 activity that promotes the transcription of neuronal insulin-like peptides. These sequential cell-autonomous reactions in ASK neurons then activate insulin/IGF-1 signaling, which culminates in the suppression of DAF-16/FOXO activity. This suppression results in the interruption of dauer development, independently of pheromone presence. These findings suggest that neuronal peroxisomal FA β-oxidation is indispensable for animal development by regulating the ER stress response and neuroendocrine signaling.

Original languageEnglish
Article number9353
JournalScientific reports
Volume7
Issue number1
DOIs
Publication statusPublished - 2017 Dec 1

Fingerprint

Caenorhabditis elegans
Fatty Acids
Endoplasmic Reticulum Stress
Pheromones
Neurons
Insulin
Insulin-Like Growth Factor I
Peptides
Genes

All Science Journal Classification (ASJC) codes

  • General

Cite this

@article{49f002eb12ad4253a11e0f56defceb05,
title = "Genetic deficiency in neuronal peroxisomal fatty acid β-oxidation causes the interruption of dauer development in Caenorhabditis elegans",
abstract = "Although peroxisomal fatty acid (FA) β-oxidation is known to be critical for animal development, the cellular mechanisms that control the manner in which its neuronal deficiency causes developmental defects remain unclear. To elucidate the potential cellular consequences of neuronal FA metabolic disorder for dauer development, an alternative developmental process in Caenorhabditis elegans that occurs during stress, we investigated the sequential effects of its corresponding genetic deficiency. Here, we show that the daf-22 gene in peroxisomal FA β-oxidation plays a distinct role in ASK neurons, and its deficiency interrupts dauer development even in the presence of the exogenous ascaroside pheromones that induce such development. Un-metabolized FAs accumulated in ASK neurons of daf-22 mutants stimulate the endoplasmic reticulum (ER) stress response, which may enhance the XBP-1 activity that promotes the transcription of neuronal insulin-like peptides. These sequential cell-autonomous reactions in ASK neurons then activate insulin/IGF-1 signaling, which culminates in the suppression of DAF-16/FOXO activity. This suppression results in the interruption of dauer development, independently of pheromone presence. These findings suggest that neuronal peroxisomal FA β-oxidation is indispensable for animal development by regulating the ER stress response and neuroendocrine signaling.",
author = "Saeram Park and Paik, {Young Ki}",
year = "2017",
month = "12",
day = "1",
doi = "10.1038/s41598-017-10020-x",
language = "English",
volume = "7",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",
number = "1",

}

TY - JOUR

T1 - Genetic deficiency in neuronal peroxisomal fatty acid β-oxidation causes the interruption of dauer development in Caenorhabditis elegans

AU - Park, Saeram

AU - Paik, Young Ki

PY - 2017/12/1

Y1 - 2017/12/1

N2 - Although peroxisomal fatty acid (FA) β-oxidation is known to be critical for animal development, the cellular mechanisms that control the manner in which its neuronal deficiency causes developmental defects remain unclear. To elucidate the potential cellular consequences of neuronal FA metabolic disorder for dauer development, an alternative developmental process in Caenorhabditis elegans that occurs during stress, we investigated the sequential effects of its corresponding genetic deficiency. Here, we show that the daf-22 gene in peroxisomal FA β-oxidation plays a distinct role in ASK neurons, and its deficiency interrupts dauer development even in the presence of the exogenous ascaroside pheromones that induce such development. Un-metabolized FAs accumulated in ASK neurons of daf-22 mutants stimulate the endoplasmic reticulum (ER) stress response, which may enhance the XBP-1 activity that promotes the transcription of neuronal insulin-like peptides. These sequential cell-autonomous reactions in ASK neurons then activate insulin/IGF-1 signaling, which culminates in the suppression of DAF-16/FOXO activity. This suppression results in the interruption of dauer development, independently of pheromone presence. These findings suggest that neuronal peroxisomal FA β-oxidation is indispensable for animal development by regulating the ER stress response and neuroendocrine signaling.

AB - Although peroxisomal fatty acid (FA) β-oxidation is known to be critical for animal development, the cellular mechanisms that control the manner in which its neuronal deficiency causes developmental defects remain unclear. To elucidate the potential cellular consequences of neuronal FA metabolic disorder for dauer development, an alternative developmental process in Caenorhabditis elegans that occurs during stress, we investigated the sequential effects of its corresponding genetic deficiency. Here, we show that the daf-22 gene in peroxisomal FA β-oxidation plays a distinct role in ASK neurons, and its deficiency interrupts dauer development even in the presence of the exogenous ascaroside pheromones that induce such development. Un-metabolized FAs accumulated in ASK neurons of daf-22 mutants stimulate the endoplasmic reticulum (ER) stress response, which may enhance the XBP-1 activity that promotes the transcription of neuronal insulin-like peptides. These sequential cell-autonomous reactions in ASK neurons then activate insulin/IGF-1 signaling, which culminates in the suppression of DAF-16/FOXO activity. This suppression results in the interruption of dauer development, independently of pheromone presence. These findings suggest that neuronal peroxisomal FA β-oxidation is indispensable for animal development by regulating the ER stress response and neuroendocrine signaling.

UR - http://www.scopus.com/inward/record.url?scp=85028041968&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85028041968&partnerID=8YFLogxK

U2 - 10.1038/s41598-017-10020-x

DO - 10.1038/s41598-017-10020-x

M3 - Article

C2 - 28839231

AN - SCOPUS:85028041968

VL - 7

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

IS - 1

M1 - 9353

ER -