Genome Editing Using CRISPR-Cas9 and Autoimmune Diseases: A Comprehensive Review

Min Ho Lee, Jae Il Shin, Jae Won Yang, Keum Hwa Lee, Do Hyeon Cha, Jun Beom Hong, Yeoeun Park, Eugene Choi, Kalthoum Tizaoui, Ai Koyanagi, Louis Jacob, Seoyeon Park, Ji Hong Kim, Lee Smith

Research output: Contribution to journalReview articlepeer-review

3 Citations (Scopus)

Abstract

Autoimmune diseases are disorders that destruct or disrupt the body’s own tissues by its own immune system. Several studies have revealed that polymorphisms of multiple genes are involved in autoimmune diseases. Meanwhile, gene therapy has become a promising approach in autoimmune diseases, and clustered regularly interspaced palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9) has become one of the most prominent methods. It has been shown that CRISPR-Cas9 can be applied to knock out proprotein convertase subtilisin/kexin type 9 (PCSK9) or block PCSK9, resulting in lowering low-density lipoprotein cholesterol. In other studies, it can be used to treat rare diseases such as ornithine transcarbamylase (OTC) deficiency and hereditary tyrosinemia. However, few studies on the treatment of autoimmune disease using CRISPR-Cas9 have been reported so far. In this review, we highlight the current and potential use of CRISPR-Cas9 in the management of autoimmune diseases. We summarize the potential target genes for immunomodulation using CRISPR-Cas9 in autoimmune diseases including rheumatoid arthritis (RA), inflammatory bowel diseases (IBD), systemic lupus erythematosus (SLE), multiple sclerosis (MS), type 1 diabetes mellitus (DM), psoriasis, and type 1 coeliac disease. This article will give a new perspective on understanding the use of CRISPR-Cas9 in autoimmune diseases not only through animal models but also in human models. Emerging approaches to investigate the potential target genes for CRISPR-Cas9 treatment may be promising for the tailored immunomodulation of some autoimmune diseases in the near future.

Original languageEnglish
Article number1337
JournalInternational journal of molecular sciences
Volume23
Issue number3
DOIs
Publication statusPublished - 2022 Feb 1

Bibliographical note

Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Genome Editing Using CRISPR-Cas9 and Autoimmune Diseases: A Comprehensive Review'. Together they form a unique fingerprint.

Cite this