Geomechanical, hydraulic and thermal characteristics of deep oceanic sandy sediments recovered during the second Ulleung Basin gas hydrate expedition

Yohan Cha, Tae Sup Yun, Young Jin Kim, Joo Yong Lee, Tae Hyuk Kwon

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

This study investigates the geomechanical, hydraulic and thermal characteristics of natural sandy sediments collected during the Ulleung Basin gas hydrate expedition 2, East Sea, offshore Korea. The studied sediment formation is considered as a potential target reservoir for natural gas production. The sediments contained silt, clay and sand fractions of 21%, 1.3% and 77.7%, respectively, as well as diatomaceous minerals with internal pores. The peak friction angle and critical state (or residual state) friction angle under drained conditions were ∼26° and ∼22°, respectively. There was minimal or no apparent cohesion intercept. Stress- and strain-dependent elastic moduli, such as tangential modulus and secant modulus, were identified. The sediment stiffness increased with increasing confining stress, but degraded with increasing strain regime. Variations in water permeability with water saturation were obtained by fitting experimental matric suction-water saturation data to the Maulem-van Genuchen model. A significant reduction in thermal conductivity (from ∼1.4-1.6 to ∼0.5-0.7 W·m-1·K-1) was observed when water saturation decreased from 100% to ∼10%-20%. In addition, the electrical resistance increased quasi-linearly with decreasing water saturation. The geomechanical, hydraulic and thermal properties of the hydrate-free sediments reported herein can be used as the baseline when predicting properties and behavior of the sediments containing hydrates, and when the hydrates dissociate during gas production. The variations in thermal and hydraulic properties with changing water and gas saturation can be used to assess gas production rates from hydrate-bearing deposits. In addition, while depressurization of hydrate-bearing sediments inevitably causes deformation of sediments under drained conditions, the obtained strength and stiffness properties and stress-strain responses of the sedimentary formation under drained loading conditions can be effectively used to assess sediment responses to depressurization to ensure safe gas production operations in this potential target reservoir.

Original languageEnglish
Article number775
JournalEnergies
Volume9
Issue number10
DOIs
Publication statusPublished - 2016 Oct

Fingerprint

Gas Hydrate
Gas hydrates
Sediment
Hydraulics
Sediments
Hydrates
Saturation
Water
Bearings (structural)
Gases
Stiffness
Friction
Modulus
Hot Temperature
Angle
Critical State
Target
Acoustic impedance
Natural Gas
Cohesion

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Cite this

@article{d44c2e48dcf049219c8d5f16bfed48f6,
title = "Geomechanical, hydraulic and thermal characteristics of deep oceanic sandy sediments recovered during the second Ulleung Basin gas hydrate expedition",
abstract = "This study investigates the geomechanical, hydraulic and thermal characteristics of natural sandy sediments collected during the Ulleung Basin gas hydrate expedition 2, East Sea, offshore Korea. The studied sediment formation is considered as a potential target reservoir for natural gas production. The sediments contained silt, clay and sand fractions of 21{\%}, 1.3{\%} and 77.7{\%}, respectively, as well as diatomaceous minerals with internal pores. The peak friction angle and critical state (or residual state) friction angle under drained conditions were ∼26° and ∼22°, respectively. There was minimal or no apparent cohesion intercept. Stress- and strain-dependent elastic moduli, such as tangential modulus and secant modulus, were identified. The sediment stiffness increased with increasing confining stress, but degraded with increasing strain regime. Variations in water permeability with water saturation were obtained by fitting experimental matric suction-water saturation data to the Maulem-van Genuchen model. A significant reduction in thermal conductivity (from ∼1.4-1.6 to ∼0.5-0.7 W·m-1·K-1) was observed when water saturation decreased from 100{\%} to ∼10{\%}-20{\%}. In addition, the electrical resistance increased quasi-linearly with decreasing water saturation. The geomechanical, hydraulic and thermal properties of the hydrate-free sediments reported herein can be used as the baseline when predicting properties and behavior of the sediments containing hydrates, and when the hydrates dissociate during gas production. The variations in thermal and hydraulic properties with changing water and gas saturation can be used to assess gas production rates from hydrate-bearing deposits. In addition, while depressurization of hydrate-bearing sediments inevitably causes deformation of sediments under drained conditions, the obtained strength and stiffness properties and stress-strain responses of the sedimentary formation under drained loading conditions can be effectively used to assess sediment responses to depressurization to ensure safe gas production operations in this potential target reservoir.",
author = "Yohan Cha and Yun, {Tae Sup} and Kim, {Young Jin} and Lee, {Joo Yong} and Kwon, {Tae Hyuk}",
year = "2016",
month = "10",
doi = "10.3390/en9100775",
language = "English",
volume = "9",
journal = "Energies",
issn = "1996-1073",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "10",

}

Geomechanical, hydraulic and thermal characteristics of deep oceanic sandy sediments recovered during the second Ulleung Basin gas hydrate expedition. / Cha, Yohan; Yun, Tae Sup; Kim, Young Jin; Lee, Joo Yong; Kwon, Tae Hyuk.

In: Energies, Vol. 9, No. 10, 775, 10.2016.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Geomechanical, hydraulic and thermal characteristics of deep oceanic sandy sediments recovered during the second Ulleung Basin gas hydrate expedition

AU - Cha, Yohan

AU - Yun, Tae Sup

AU - Kim, Young Jin

AU - Lee, Joo Yong

AU - Kwon, Tae Hyuk

PY - 2016/10

Y1 - 2016/10

N2 - This study investigates the geomechanical, hydraulic and thermal characteristics of natural sandy sediments collected during the Ulleung Basin gas hydrate expedition 2, East Sea, offshore Korea. The studied sediment formation is considered as a potential target reservoir for natural gas production. The sediments contained silt, clay and sand fractions of 21%, 1.3% and 77.7%, respectively, as well as diatomaceous minerals with internal pores. The peak friction angle and critical state (or residual state) friction angle under drained conditions were ∼26° and ∼22°, respectively. There was minimal or no apparent cohesion intercept. Stress- and strain-dependent elastic moduli, such as tangential modulus and secant modulus, were identified. The sediment stiffness increased with increasing confining stress, but degraded with increasing strain regime. Variations in water permeability with water saturation were obtained by fitting experimental matric suction-water saturation data to the Maulem-van Genuchen model. A significant reduction in thermal conductivity (from ∼1.4-1.6 to ∼0.5-0.7 W·m-1·K-1) was observed when water saturation decreased from 100% to ∼10%-20%. In addition, the electrical resistance increased quasi-linearly with decreasing water saturation. The geomechanical, hydraulic and thermal properties of the hydrate-free sediments reported herein can be used as the baseline when predicting properties and behavior of the sediments containing hydrates, and when the hydrates dissociate during gas production. The variations in thermal and hydraulic properties with changing water and gas saturation can be used to assess gas production rates from hydrate-bearing deposits. In addition, while depressurization of hydrate-bearing sediments inevitably causes deformation of sediments under drained conditions, the obtained strength and stiffness properties and stress-strain responses of the sedimentary formation under drained loading conditions can be effectively used to assess sediment responses to depressurization to ensure safe gas production operations in this potential target reservoir.

AB - This study investigates the geomechanical, hydraulic and thermal characteristics of natural sandy sediments collected during the Ulleung Basin gas hydrate expedition 2, East Sea, offshore Korea. The studied sediment formation is considered as a potential target reservoir for natural gas production. The sediments contained silt, clay and sand fractions of 21%, 1.3% and 77.7%, respectively, as well as diatomaceous minerals with internal pores. The peak friction angle and critical state (or residual state) friction angle under drained conditions were ∼26° and ∼22°, respectively. There was minimal or no apparent cohesion intercept. Stress- and strain-dependent elastic moduli, such as tangential modulus and secant modulus, were identified. The sediment stiffness increased with increasing confining stress, but degraded with increasing strain regime. Variations in water permeability with water saturation were obtained by fitting experimental matric suction-water saturation data to the Maulem-van Genuchen model. A significant reduction in thermal conductivity (from ∼1.4-1.6 to ∼0.5-0.7 W·m-1·K-1) was observed when water saturation decreased from 100% to ∼10%-20%. In addition, the electrical resistance increased quasi-linearly with decreasing water saturation. The geomechanical, hydraulic and thermal properties of the hydrate-free sediments reported herein can be used as the baseline when predicting properties and behavior of the sediments containing hydrates, and when the hydrates dissociate during gas production. The variations in thermal and hydraulic properties with changing water and gas saturation can be used to assess gas production rates from hydrate-bearing deposits. In addition, while depressurization of hydrate-bearing sediments inevitably causes deformation of sediments under drained conditions, the obtained strength and stiffness properties and stress-strain responses of the sedimentary formation under drained loading conditions can be effectively used to assess sediment responses to depressurization to ensure safe gas production operations in this potential target reservoir.

UR - http://www.scopus.com/inward/record.url?scp=85021208541&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85021208541&partnerID=8YFLogxK

U2 - 10.3390/en9100775

DO - 10.3390/en9100775

M3 - Article

AN - SCOPUS:85021208541

VL - 9

JO - Energies

JF - Energies

SN - 1996-1073

IS - 10

M1 - 775

ER -