Geotechnical characterization of marine sediments in the Ulleung Basin, East Sea

Changho Lee, Tae Sup Yun, Jong Sub Lee, Jang Jun Bahk, J. Carlos Santamarina

Research output: Contribution to journalArticlepeer-review

55 Citations (Scopus)


The geotechnical characteristics of Ulleung Basin sediments are explored using depressurized samples obtained at 2100. m water depth and 110. m below the sea floor. Geotechnical index tests, X-ray diffraction, and SEM images were obtained to identify the governing sediment parameters, chemical composition and mineralogy. We use an instrumented multi-sensor oedometer cell to determine the small-strain stiffness, zero-lateral strain compressibility and electromagnetic properties, and a triaxial device to measure shear strength. SEM images show a sediment structure dominated by microfossils, with some clay minerals that include kaolinite, illite, and chlorite. The preponderant presence of microfossils determines the high porosity of these sediments, defines their microstructure, and governs all macroscale properties. The shear wave velocity increases as the vertical effective stress increases; on the other hand, porosity, permittivity, electrical conductivity, and hydraulic conductivity decrease with increasing confinement. All these parameters exhibit a bi-linear response with effective vertical stress due to the crushable nature of microfossils. Well-established empirical correlations used to evaluate engineering parameters do not apply for these diatomaceous sediments which exhibit higher compressibility than anticipated based on correlations with index properties. Settlements will be particularly important if gas production is attempted using depressurization because this approach will cause both hydrate dissociation and increase in effective stress.

Original languageEnglish
Pages (from-to)151-158
Number of pages8
JournalEngineering Geology
Issue number1-2
Publication statusPublished - 2011 Jan 10

Bibliographical note

Funding Information:
This work was supported by the Korea Institute of Geoscience & Mineral Resources (KIGAM), under a research contract to T.S. Yun. Additional funds to Dr. C. Lee were provided by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-357-D00271), and to Dr. Santamarina by Chevron Joint Industry Project on Methane Hydrates.

All Science Journal Classification (ASJC) codes

  • Geotechnical Engineering and Engineering Geology
  • Geology


Dive into the research topics of 'Geotechnical characterization of marine sediments in the Ulleung Basin, East Sea'. Together they form a unique fingerprint.

Cite this