TY - JOUR
T1 - Giant meso-meso-linked porphyrin arrays of micrometer molecular length and their fabrication
AU - Aratani, Naoki
AU - Takagi, Akihiko
AU - Yanagawa, Yoshiki
AU - Matsumoto, Takuya
AU - Kawai, Tomoji
AU - Yoon, Zin Seok
AU - Kim, Dongho
AU - Osuka, Atsuhiro
PY - 2005/5/20
Y1 - 2005/5/20
N2 - On the basis of the AgI-promoted coupling reaction of zinc(II)-5,15-bis(3,5-dioctyloxyphenyl)porphyrin Z1, chain elongation has been attempted by using a stepwise doubling approach, which provides Z2, Z4, Z8, Z16, Z32, Z64, Z128, Z256, Z384, and Z512. The porphyrin arrays up to Z128 are sufficiently soluble in CHCl3 and THF despite their very long molecular lengths and rodlike structures, while the arrays over Z128 show a significant drop in solubility and stability. The discrete porphyrin arrays thus isolated were characterized by means of 1H NMR spectroscopy, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, UV/Vis spectroscopy, gel-permeation chromatography (GPC), cyclic voltammetry (CV), single-crystal X-ray crystallography, scanning tunneling microscopy (STM), and atomic force microscopy (AFM). Contrary to expected linear conformations of the arrays Z n (where n is the number of porphyrins), the single molecular images of Z128, Z256, and Z512 revealed largely bent structures; this finding indicates the substantial conformational flexibility of Zn. We also exploited an effective synthetic route by means of which Zn can be fabricated with a thiol-protected aryl group to provide ZnS2 through ZnBr2, by bromination with N-bromosuccinimide and subsequent Pd-catalyzed Suzuki-Miyaura arylation. Finally, the reaction of Z256 provided Z512, Z768, and Z1024. Collectively, this work provides an important milestone in the preparation of sub-microscale discrete organic molecules and the fabrication of molecular-based materials, hence significantly contributing to device applications.
AB - On the basis of the AgI-promoted coupling reaction of zinc(II)-5,15-bis(3,5-dioctyloxyphenyl)porphyrin Z1, chain elongation has been attempted by using a stepwise doubling approach, which provides Z2, Z4, Z8, Z16, Z32, Z64, Z128, Z256, Z384, and Z512. The porphyrin arrays up to Z128 are sufficiently soluble in CHCl3 and THF despite their very long molecular lengths and rodlike structures, while the arrays over Z128 show a significant drop in solubility and stability. The discrete porphyrin arrays thus isolated were characterized by means of 1H NMR spectroscopy, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, UV/Vis spectroscopy, gel-permeation chromatography (GPC), cyclic voltammetry (CV), single-crystal X-ray crystallography, scanning tunneling microscopy (STM), and atomic force microscopy (AFM). Contrary to expected linear conformations of the arrays Z n (where n is the number of porphyrins), the single molecular images of Z128, Z256, and Z512 revealed largely bent structures; this finding indicates the substantial conformational flexibility of Zn. We also exploited an effective synthetic route by means of which Zn can be fabricated with a thiol-protected aryl group to provide ZnS2 through ZnBr2, by bromination with N-bromosuccinimide and subsequent Pd-catalyzed Suzuki-Miyaura arylation. Finally, the reaction of Z256 provided Z512, Z768, and Z1024. Collectively, this work provides an important milestone in the preparation of sub-microscale discrete organic molecules and the fabrication of molecular-based materials, hence significantly contributing to device applications.
UR - http://www.scopus.com/inward/record.url?scp=19944388615&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=19944388615&partnerID=8YFLogxK
U2 - 10.1002/chem.200401306
DO - 10.1002/chem.200401306
M3 - Article
C2 - 15798970
AN - SCOPUS:19944388615
VL - 11
SP - 3389
EP - 3404
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
SN - 0947-6539
IS - 11
ER -