TY - JOUR
T1 - Granulocyte-macrophage colony-stimulating factor promotes survival of dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced murine Parkinson's disease model
AU - Kim, Na K.
AU - Choi, Byung H.
AU - Huang, Xian
AU - Snyder, Brian J.
AU - Bukhari, Shefqat
AU - Kong, Tae Ho
AU - Park, Hyeonseon
AU - Park, Hyung C.
AU - Park, So R.
AU - Ha, Yoon
PY - 2009/3
Y1 - 2009/3
N2 - Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic cytokine that has the potential for clinical application. The biological effects of GM-CSF have been well characterized, and include stimulation of bone marrow hematopoietic stem cell proliferation and inhibition of apoptosis of hematopoietic cells. In contrast, the therapeutic effects of GM-CSF on the central nervous system in acute injury such as stroke and spinal cord injury have been reported only recently. To better understand the protective effect of GM-CSF on dopaminergic neurons in Parkinson's disease (PD), we investigated the effect of GM-CSF on the survival of dopamine neurons and changes in locomotor behavior in a murine PD model. We investigated the neuroprotective effects of GM-CSF in 1-methyl-4-phenylpyridinium (MPP +)-treated PC12 cells as well as in embryonic mouse primary mesencephalic neurons (PMNs) in vitro. To investigate the role of GM-CSF in vivo, we prepared a mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) PD model, and examined the effects of GM-CSF on dopaminergic neuron survival in the substantia nigra and on locomotor behavior. Treatment with GM-CSF significantly reduced MPP+-induced dopaminergic cell death in PC12 cells and PMNs in vitro. GM-CSF modulated the expression of apoptosis-related proteins, Bcl-2 and Bax, in vitro. Furthermore, administration of GM-CSF (50 μg/kg body weight/day) in vivo for 7 days protected dopaminergic neurons in the substantia nigra and improved locomotor behavior in a mouse MPTP model of PD.
AB - Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic cytokine that has the potential for clinical application. The biological effects of GM-CSF have been well characterized, and include stimulation of bone marrow hematopoietic stem cell proliferation and inhibition of apoptosis of hematopoietic cells. In contrast, the therapeutic effects of GM-CSF on the central nervous system in acute injury such as stroke and spinal cord injury have been reported only recently. To better understand the protective effect of GM-CSF on dopaminergic neurons in Parkinson's disease (PD), we investigated the effect of GM-CSF on the survival of dopamine neurons and changes in locomotor behavior in a murine PD model. We investigated the neuroprotective effects of GM-CSF in 1-methyl-4-phenylpyridinium (MPP +)-treated PC12 cells as well as in embryonic mouse primary mesencephalic neurons (PMNs) in vitro. To investigate the role of GM-CSF in vivo, we prepared a mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) PD model, and examined the effects of GM-CSF on dopaminergic neuron survival in the substantia nigra and on locomotor behavior. Treatment with GM-CSF significantly reduced MPP+-induced dopaminergic cell death in PC12 cells and PMNs in vitro. GM-CSF modulated the expression of apoptosis-related proteins, Bcl-2 and Bax, in vitro. Furthermore, administration of GM-CSF (50 μg/kg body weight/day) in vivo for 7 days protected dopaminergic neurons in the substantia nigra and improved locomotor behavior in a mouse MPTP model of PD.
UR - http://www.scopus.com/inward/record.url?scp=61449227467&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=61449227467&partnerID=8YFLogxK
U2 - 10.1111/j.1460-9568.2009.06653.x
DO - 10.1111/j.1460-9568.2009.06653.x
M3 - Article
C2 - 19245369
AN - SCOPUS:61449227467
SN - 0953-816X
VL - 29
SP - 891
EP - 900
JO - European Journal of Neuroscience
JF - European Journal of Neuroscience
IS - 5
ER -