Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance

Hee Ro Chae, Jaewoo Lee, Chung Hak Lee, In Chul Kim, Pyung Kyu Park

Research output: Contribution to journalArticle

252 Citations (Scopus)

Abstract

We demonstrated that a thin-film composite (TFC) membrane with graphene oxide (GO) embedded in its polyamide (PA) layer exhibited high water permeability, anti-biofouling property, and chlorine resistance without loss of salt rejection. The GO fabricated by chemical exfoliation was fractionated for size control, and then the fractionated GO was dispersed in an aqueous solution of m-phenylenediamine (MPD) before interfacial polymerization. The water permeability and anti-biofouling property of the GO-embedded TFC (GO-TFC) membrane were enhanced by approximately 80% and 98% (based on the biovolume), respectively, and high salt rejection was retained even at 48,000. ppm. h chlorination. Compared with the TFC membrane, the enhanced performances of the GO-TFC membrane were attributed to the change of hydrophilicity, surface charge, surface roughness, and thickness of the PA layer through the incorporation of GO. Both the size and the concentration of GO were the key factors in improving the performance of the GO-TFC membrane.

Original languageEnglish
Pages (from-to)128-135
Number of pages8
JournalJournal of Membrane Science
Volume483
DOIs
Publication statusPublished - 2015 Jun 1

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Materials Science(all)
  • Physical and Theoretical Chemistry
  • Filtration and Separation

Fingerprint Dive into the research topics of 'Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance'. Together they form a unique fingerprint.

  • Cite this