Hallmarks of Hunds coupling in the Mott insulator Ca 2 RuO 4

D. Sutter, C. G. Fatuzzo, S. Moser, M. Kim, R. Fittipaldi, A. Vecchione, V. Granata, Y. Sassa, F. Cossalter, G. Gatti, M. Grioni, H. M. Rønnow, N. C. Plumb, C. E. Matt, M. Shi, M. Hoesch, T. K. Kim, T. R. Chang, H. T. Jeng, C. JozwiakA. Bostwick, E. Rotenberg, A. Georges, T. Neupert, J. Chang

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

A paradigmatic case of multi-band Mott physics including spin-orbit and Hund's coupling is realised in Ca$_2$RuO$_4$. Progress in understanding the nature of this Mott insulating phase has been impeded by the lack of knowledge about the low-energy electronic structure. Here we provide -- using angle-resolved photoemission electron spectroscopy -- the band structure of the paramagnetic insulating phase of Ca$_2$RuO$_4$ and show how it features several distinct energy scales. Comparison to a simple analysis of atomic multiplets provides a quantitative estimate of the Hund's coupling $J=0.4$ eV. Furthermore, the experimental spectra are in good agreement with electronic structure calculations performed with Dynamical Mean-Field Theory. The crystal field stabilisation of the d$_{xy}$ orbital due to $c$-axis contraction is shown to be important in explaining the nature of the insulating state. It is thus a combination of multiband physics, Coulomb interaction and Hund's coupling that generates the Mott insulating state of Ca$_2$RuO$_4$. These results underscore the importance of Hund's coupling in the ruthenates and related multiband materials.
Original languageEnglish
JournalNature Communications
Volume8
DOIs
Publication statusPublished - 2017 May 5

    Fingerprint

Cite this

Sutter, D., Fatuzzo, C. G., Moser, S., Kim, M., Fittipaldi, R., Vecchione, A., Granata, V., Sassa, Y., Cossalter, F., Gatti, G., Grioni, M., Rønnow, H. M., Plumb, N. C., Matt, C. E., Shi, M., Hoesch, M., Kim, T. K., Chang, T. R., Jeng, H. T., ... Chang, J. (2017). Hallmarks of Hunds coupling in the Mott insulator Ca 2 RuO 4. Nature Communications, 8. https://doi.org/10.1038/ncomms15176