Abstract
A total of 20 urban neighbourhood-scale eddy covariance flux tower datasets are made openly available after being harmonized to create a 50 site-year collection with broad diversity in climate and urban surface characteristics. Variables needed as inputs for land surface models (incoming radiation, temperature, humidity, air pressure, wind and precipitation) are quality controlled, gap-filled and prepended with 10 years of reanalysis-derived local data, enabling an extended spin up to equilibrate models with local climate conditions. For both gap filling and spin up, ERA5 reanalysis meteorological data are bias corrected using tower-based observations, accounting for diurnal, seasonal and local urban effects not modelled in ERA5. The bias correction methods developed perform well compared to methods used in other datasets (e.g. WFDE5 or FLUXNET2015). Other variables (turbulent and upwelling radiation fluxes) are harmonized and quality controlled without gap filling. Site description metadata include local land cover fractions (buildings, roads, trees, grass etc.), building height and morphology, aerodynamic roughness estimates, population density and satellite imagery. This open collection can help extend our understanding of urban environmental processes through observational synthesis studies or in the evaluation of land surface environmental models in a wide range of urban settings. These data can be accessed from https://doi.org/10.5281/zenodo.7104984 (Lipson et al., 2022).
Original language | English |
---|---|
Pages (from-to) | 5157-5178 |
Number of pages | 22 |
Journal | Earth System Science Data |
Volume | 14 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2022 Nov 22 |
Bibliographical note
Funding Information:The project coordinating team has been supported by UNSW Sydney and the Australian Research Council (ARC) Centre of Excellence for Climate System Science (grant no. CE110001028), University of Reading, the Met Office and ERC urbisphere 855005. Computation support has been provided by the ARC Centre of Excellence for Climate Extremes (grant no. CE170100023) and National Computational Infrastructure (NCI) Australia. It contains modified Copernicus Climate Change Service Information. Site-affiliated acknowledgements are listed in Table 8.
Publisher Copyright:
© Copyright:
All Science Journal Classification (ASJC) codes
- Earth and Planetary Sciences(all)