TY - JOUR
T1 - Harnessing dark fermentative hydrogen from pretreated mixture of food waste and sewage sludge under sequencing batch mode
AU - Nam, Joo Youn
AU - Kim, Dong Hoon
AU - Kim, Sang Hyoun
AU - Lee, Wontae
AU - Shin, Hang Sik
AU - Kim, Hyun Woo
N1 - Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2016/4/1
Y1 - 2016/4/1
N2 - Food waste and sewage sludge are the most abundant and problematic organic wastes in any society. Mixture of these two wastes may provide appropriate substrate condition for dark fermentative biohydrogen production based on synergistic mutual benefits. This work evaluates continuous hydrogen production from the cosubstrate of food waste and sewage sludge to verify mechanisms of performance improvement in anaerobic sequencing batch reactors. Volatile solid concentration and mixing ratio of food waste and sludge were adjusted to 5 % and 80:20, respectively. Five different hydraulic retention times (HRT) of 36, 42, 48, 72, and 108 h were tested using anaerobic sequencing batch reactors to find out optimal operating condition. Results show that the best performance was achieved at HRT 72 h, where the hydrogen yield, the hydrogen production rate, and hydrogen content were 62.0 mL H2/g VS, 1.0 L H2/L/day, and ~50 %, respectively. Sufficient solid retention time (143 h) and proper loading rate (8.2 g COD/L/day as carbohydrate) at HRT 72h led to the enhanced performance with better hydrogen production showing appropriate n-butyrate/acetate (B/A) ratio of 2.6. Analytical result of terminal-restriction fragment length polymorphism revealed that specific peaks associated with Clostridium sp. and Bacillus sp. were strongly related to enhanced hydrogen production from the cosubstrate of food waste and sewage sludge.
AB - Food waste and sewage sludge are the most abundant and problematic organic wastes in any society. Mixture of these two wastes may provide appropriate substrate condition for dark fermentative biohydrogen production based on synergistic mutual benefits. This work evaluates continuous hydrogen production from the cosubstrate of food waste and sewage sludge to verify mechanisms of performance improvement in anaerobic sequencing batch reactors. Volatile solid concentration and mixing ratio of food waste and sludge were adjusted to 5 % and 80:20, respectively. Five different hydraulic retention times (HRT) of 36, 42, 48, 72, and 108 h were tested using anaerobic sequencing batch reactors to find out optimal operating condition. Results show that the best performance was achieved at HRT 72 h, where the hydrogen yield, the hydrogen production rate, and hydrogen content were 62.0 mL H2/g VS, 1.0 L H2/L/day, and ~50 %, respectively. Sufficient solid retention time (143 h) and proper loading rate (8.2 g COD/L/day as carbohydrate) at HRT 72h led to the enhanced performance with better hydrogen production showing appropriate n-butyrate/acetate (B/A) ratio of 2.6. Analytical result of terminal-restriction fragment length polymorphism revealed that specific peaks associated with Clostridium sp. and Bacillus sp. were strongly related to enhanced hydrogen production from the cosubstrate of food waste and sewage sludge.
UR - http://www.scopus.com/inward/record.url?scp=84936817440&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84936817440&partnerID=8YFLogxK
U2 - 10.1007/s11356-015-4880-1
DO - 10.1007/s11356-015-4880-1
M3 - Article
C2 - 26150291
AN - SCOPUS:84936817440
VL - 23
SP - 7155
EP - 7161
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
SN - 0944-1344
IS - 8
ER -