TY - GEN
T1 - Heat/mass transfer measurement within a film cooling hole of square and rectangular cross sections
AU - Cho, Hyung Hee
AU - Kang, Seung Goo
AU - Rhee, Dong Ho
PY - 2001
Y1 - 2001
N2 - An experimental study has been conducted to investigate the heat/mass transfer characteristics within film cooling holes of square and rectangular cross-section. The experiments for this study have been performed using a naphthalene sublimation method, and the flow field has been analyzed by numerical calculation using a commercial code (FLUENT). The rectangular cross-section has the aspect ratio of 2 and the same hydraulic diameter as the square cross-section. A duct flow enters into a film cooling hole in a cross-direction. For the film cooling hole with square cross-section, it is observed that the reattachment of separated flow and the vortices within the hole enhance considerably the heat/mass transfer around the hole entrance region. The heat/mass transfer on the leading edge side of hole exit region increases as the blowing rates decrease because the mainflow induces a secondary vortex. Heat/mass transfer patterns within the film cooling hole are changed slightly with the various Reynolds numbers. For the film cooling hole with rectangular cross-section, overall heat/mass transfer characteristics are similar with those for the square cross-section. However, heat/mass transfer on the leading edge side of hole entrance region has two peak regions due to split flow reattachment, and heat/mass transfer on the leading edge side of hole exit region is less sensitive to the blowing ratios than the square cross-section case.
AB - An experimental study has been conducted to investigate the heat/mass transfer characteristics within film cooling holes of square and rectangular cross-section. The experiments for this study have been performed using a naphthalene sublimation method, and the flow field has been analyzed by numerical calculation using a commercial code (FLUENT). The rectangular cross-section has the aspect ratio of 2 and the same hydraulic diameter as the square cross-section. A duct flow enters into a film cooling hole in a cross-direction. For the film cooling hole with square cross-section, it is observed that the reattachment of separated flow and the vortices within the hole enhance considerably the heat/mass transfer around the hole entrance region. The heat/mass transfer on the leading edge side of hole exit region increases as the blowing rates decrease because the mainflow induces a secondary vortex. Heat/mass transfer patterns within the film cooling hole are changed slightly with the various Reynolds numbers. For the film cooling hole with rectangular cross-section, overall heat/mass transfer characteristics are similar with those for the square cross-section. However, heat/mass transfer on the leading edge side of hole entrance region has two peak regions due to split flow reattachment, and heat/mass transfer on the leading edge side of hole exit region is less sensitive to the blowing ratios than the square cross-section case.
UR - http://www.scopus.com/inward/record.url?scp=84905734721&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84905734721&partnerID=8YFLogxK
U2 - 10.1115/2001-GT-0128
DO - 10.1115/2001-GT-0128
M3 - Conference contribution
AN - SCOPUS:84905734721
SN - 9780791878521
T3 - Proceedings of the ASME Turbo Expo
BT - Heat Transfer; Electric Power; Industrial and Cogeneration
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2001: Power for Land, Sea, and Air, GT 2001
Y2 - 4 June 2001 through 7 June 2001
ER -