Abstract
Heme oxygenase (HO-1) catalyzes heme to carbon monoxide (CO), biliverdin/bilirubin, and iron and is known to prevent the pathogenesis of several human diseases. We assessed the beneficial effect of heme degradation products on osteoclastogenesis induced by receptor activator of NF-κB ligand (RANKL). Treatment of RAW264.7 cells with CORM-2 (a CO donor) and bilirubin, but not with iron, decreased RANKLinduced osteoclastogenesis, with CORM-2 having a more potent anti-osteogenic effect. CORM-2 also inhibited RANKLinduced osteoclastogenesis and osteoclastic resorption activity in marrow-derived macrophages. Treatment with hemin, a HO-1 inducer, strongly inhibited RANKL-induced osteoclastogenesis in wild-type macrophages, but was ineffective in HO-1+/- cells. CORM-2 reduced RANKL-induced NFATc1 expression by inhibiting IKK-dependent NF-κB activation and reactive oxygen species production. These results suggest that CO potently inhibits RANKL-induced osteoclastogenesis by inhibiting redox-sensitive NF-κB-mediated NFATc1 expression. Our findings indicate that HO-1/CO can act as an antiresorption agent and reduce bone loss by blocking osteoclast differentiation.
Original language | English |
---|---|
Pages (from-to) | 103-108 |
Number of pages | 6 |
Journal | BMB reports |
Volume | 50 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2017 |
Bibliographical note
Funding Information:This study is supported by 2015 Research Grant from Kangwon National University (No. 520150332) and by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIP) (2013M3A9B6046563).
Publisher Copyright:
© 2017 by the The Korean Society for Biochemistry and Molecular Biology.
All Science Journal Classification (ASJC) codes
- Biochemistry
- Molecular Biology