Hierarchical BiOI nanostructures supported on a metal organic framework as efficient photocatalysts for degradation of organic pollutants in water

M. Jahurul Islam, Hyun Kook Kim, D. Amaranatha Reddy, Yujin Kim, Rory Ma, Heehyun Baek, Joonghan Kim, Tae Kyu Kim

Research output: Contribution to journalArticlepeer-review

77 Citations (Scopus)


Semiconductor-based photocatalysis is a green method for the removal of toxic organic pollutants by decomposition into harmless products. However, traditional single-component semiconductors are unable to reach high degradation efficiencies due to excessive photo charge carrier recombination. The use of hybrid nanocomposite photocatalysts is a promising strategy for overcoming this problem by reducing recombination as well as ensuring that large amounts of solar energy are harvested. Herein, a novel visible-light-active hybrid nanocomposite, BiOI/MIL-88B(Fe), was successfully synthesized through a simple precipitation method. In the BiOI/MIL-88B(Fe) composite, both BiOI and MIL-88B(Fe) have improved charge carrier separation and reduced recombination via a simple Z-scheme mechanism. Photocatalytic degradation of the pollutant RhB was carried out during irradiation of the as-synthesized composites with simulated solar light, and the BiOI/MIL-88B(Fe) (2 wt%) composite was found to exhibit the highest photocatalytic activity among the composites. In addition, colorless phenol and ciprofloxacin (CIP) degradation experiments were also performed to confirm the visible light photocatalytic performance of the BiOI/MIL-88B(Fe) hybrid nanocomposite. Scavenger experiments, PL analysis, NBT transformations, and TA-PL experiments all supported the proposed Z-scheme mechanism of the BiOI/MIL-88B(Fe) composite photocatalyst. Moreover, simple separation from solution provides this 3D composite with good reusability and long-term stability.

Original languageEnglish
Pages (from-to)6013-6023
Number of pages11
JournalDalton Transactions
Issue number18
Publication statusPublished - 2017

Bibliographical note

Funding Information:
This work was financially supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIP) (2014R1A4A1001690 and 2016R1E1A1A01941978). This research was also supported in part by the Max Planck POSTECH/KOREA Research Initiative Program [Grant No. 2016 K1A4A4A01922028] through the MEST NRF funding.

Publisher Copyright:
© 2017 The Royal Society of Chemistry.

All Science Journal Classification (ASJC) codes

  • Inorganic Chemistry


Dive into the research topics of 'Hierarchical BiOI nanostructures supported on a metal organic framework as efficient photocatalysts for degradation of organic pollutants in water'. Together they form a unique fingerprint.

Cite this